Electric vehicles have become a trend in recent years, and the lithium-ion battery pack provides them with high power and energy. The battery thermal system with air cooling was always used to prevent the high temperature of the battery pack to avoid cycle life reduction and safety issues of lithium-ion batteries. This work employed an easily applied optimization method to design a more efficient battery pack with lower temperature and more uniform temperature distribution. The proposed method consisted of four steps: the air-cooling system design, computational fluid dynamics code setups, selection of surrogate models, and optimization of the battery pack. The investigated battery pack contained eight prismatic cells, and the cells were discharged under normal driving conditions. It was shown that the optimized design performs a lower maximum temperature of 2.7 K reduction and a smaller temperature standard deviation of 0.3 K reduction than the original design. This methodology can also be implemented in industries where the battery pack contains more battery cells.

References

References
1.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4554
4571
.
2.
Shui
,
L.
,
Peng
,
X.
,
Zhang
,
J.
,
Garg
,
A.
,
Nguyen
,
H.-d.
, and
Phung Le
,
M. L.
,
2019
, “
A Coupled Mechanical–Electrochemical Study of Li-Ion Battery Based on Genetic Programming and Experimental Validation
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011008
.
3.
Niu
,
L.
,
Geng
,
S.
,
Li
,
H.
,
Du
,
S.
,
Cui
,
X.
, and
Li
,
S.
,
2018
, “
Influence of Roasting Temperature on Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode for Lithium-Ion Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
2
), p.
021007
.
4.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
5.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
6.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
Chen
,
L.
,
2017
, “
Configuration Optimization of Battery Pack in Parallel Air-Cooled Battery Thermal Management System Using an Optimization Strategy
,”
Appl. Therm. Eng.
,
123
, pp.
177
186
.
7.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
.
8.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
.
9.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
.
10.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
.
11.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Thermal Design and Simulation of Mini-Channel Cold Plate for Water Cooled Large Sized Prismatic Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
122
, pp.
80
90
.
12.
Greco
,
A.
,
Cao
,
D.
,
Jiang
,
X.
, and
Yang
,
H.
,
2014
, “
A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes
,”
J. Power Sources
,
257
, pp.
344
355
.
13.
Goli
,
P.
,
Legedza
,
S.
,
Dhar
,
A.
,
Salgado
,
R.
,
Renteria
,
J.
, and
Balandin
,
A. A.
,
2014
, “
Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries
,”
J. Power Sources
,
248
, pp.
37
43
.
14.
Samimi
,
F.
,
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2016
, “
Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded With Carbon Fibers
,”
Energy
,
96
, pp.
355
371
.
15.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
.
16.
Rao
,
Z.
,
Wang
,
Q.
, and
Huang
,
C.
,
2016
, “
Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Management System
,”
Appl. Energy
,
164
, pp.
659
669
.
17.
Wang
,
Q.
,
Rao
,
Z.
,
Huo
,
Y.
, and
Wang
,
S.
,
2016
, “
Thermal Performance of Phase Change Material/Oscillating Heat Pipe-Based Battery Thermal Management System
,”
Int. J. Therm. Sci.
,
102
, pp.
9
16
.
18.
Shui
,
L.
,
Chen
,
F.
,
Garg
,
A.
,
Peng
,
X.
,
Bao
,
N.
, and
Zhang
,
J.
,
2018
, “
Design Optimization of Battery Pack Enclosure for Electric Vehicle
,”
Struct. Multidiscipl. Optim.
,
58
, pp.
331
347
.
19.
Garg
,
A.
,
Peng
,
X.
,
Le
,
M. L. P.
,
Pareek
,
K.
, and
Chin
,
C. M. M.
,
2018
, “
Design and Analysis of Capacity Models for Lithium-Ion Battery
,”
Measurement
,
120
, pp.
114
120
.
20.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
.
21.
Aksoy
,
D. O.
, and
Sagol
,
E.
,
2016
, “
Application of Central Composite Design Method to Coal Flotation: Modelling, Optimization and Verification
,”
Fuel
,
183
, pp.
609
616
.
22.
Goswami
,
S.
,
Ghosh
,
S.
, and
Chakraborty
,
S.
,
2016
, “
Reliability Analysis of Structures by Iterative Improved Response Surface Method
,”
Struct. Safety
,
60
, pp.
56
66
.
23.
Neupane
,
S.
,
Alipanah
,
M.
,
Barnes
,
D.
, and
Li
,
X.
,
2018
, “
Heat Generation Characteristics of LiFePO4 Pouch Cells With Passive Thermal Management
,”
Energies
,
11
(
5
), pp.
1243
1256
.
24.
Khan
,
S.
,
Naseem
,
I.
,
Togneri
,
R.
, and
Bennamoun
,
M.
,
2017
, “
A Novel Adaptive Kernel for the RBF Neural Networks
,”
Circ. Syst. Signal Process.
,
36
(
4
), pp.
1639
1653
.
25.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis, The Primer
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.