The chlor-alkali industry produces significant amounts of hydrogen as by-product which can potentially feed a polymeric electrolyte membrane (PEM) fuel cell (FC) unit, whose electricity and heat production can cover part of the chemical plant consumptions yielding remarkable energy and emission savings. This work presents the modeling, development, and experimental results of a large-scale (2 MW) PEM fuel cell power plant installed at the premises of a chlor-alkali industry. It is first discussed an overview of project’s membrane-electrode assembly and fuel cell development for long life stationary applications, focusing on the design-for-manufacture process and related high-volume manufacturing routes. The work then discusses the modeling of the power plant, including a specific lumped model predicting FC stack behavior as a function of inlet stream conditions and power set point, according to regressed polarization curves. Cells’ performance decay versus lifetime reflects long-term stack test data, aiming to evidence the impact on overall energy balances and efficiency of the progression of lifetime. Balance of plant is modeled to simulate auxiliary consumptions, pressure drops, and components’ operating conditions. The model allows studying different operational strategies that maintain the power production during lifetime, minimizing efficiency losses, as well as to investigate the optimized operating setpoint of the plant at full load and during part-load operation. The last section of the paper discusses the experimental results, through a complete analysis of the plant performance after startup, including energy and mass balances and allowing to validate the model. Cumulated indicators over the first two years of operations regarding energy production, hydrogen consumption, and efficiency are also discussed.

References

References
1.
IEA (International Energy Agency)
,
2013
,
Technology Roadmap—Energy and GHG Reductions in the Chemical Industry Via Catalytic Processes
,
OECD/IEA
,
Paris, France
.
2.
Lindley
,
A.
,
1997
, “
An Economic and Environmental Analysis of the Chlor-Alkali Production Process
,” Final Report, European Commission (DG III C-4).
3.
Brinkmann
,
T.
,
Giner-Santonja
,
G.
,
Schorcht
,
F.
, and
Roudier
,
S.
,
2014
, “
Best Available Techniques (BAT)—Reference Document for the Production of Chlor-alkali
,” JRC (Joint Research Center EU), JRC91156.
4.
Lee
,
D.-Y.
,
Elgowainy
,
A. A.
, and
Dai
,
Q.
,
2017
, “
Life Cycle Greenhouse Gas Emissions of By-Product Hydrogen From Chlor-Akali Plants
” Argonne National Lab., Report ANL/ESD 17/27, https://greet.es.anl.gov/publication-chlor_alkali_h2.
5.
Schmittinger
,
P.
,
2000
,
Chlorine: Principles and Industrial Practice
,
Wiley
,
New York
.
6.
Kintrup
,
J.
,
Millaruelo
,
M.
,
Trieu
,
V.
,
Bulan
,
A.
, and
Silva Mojica
,
E.
,
2017
, “
Gas Diffusion Electrodes for Efficient Manufacturing of Chlorine and Other Chemicals
,”
Electrochem. Soc. Interface
,
26
, pp.
73
76
.
7.
ResearchInChina
,
2013
, “
Global and China Chlor-Alkali Industry Report
.”
8.
Verhage
,
A. J. L.
,
Coolegem
,
J. F.
,
Mulder
,
J. J.
,
Hakan Yildirim
,
M.
, and
de Bruijn
,
F. A.
2013
, “
30,000 h Operation of a 70 kW Stationary PEM Fuel Cell System Using Hydrogen From a Chlorine Factory
,”
Int. J. Hydrogen Energy
,
38
(
11
), pp.
4714
4724
.
9.
Scheele
,
O.
,
2012
, “
Chlorine Plant Benefits From PEM Fuel Cells
,”
Chem. Process.
,
75
(
1
), pp.
34
35
.
10.
Anon
,
2012
, “
Solvay Sees Nedstack 1 MW PEM Fuel Cell in Operation at SolVin
,”
Fuel Cells Bull.
,
2
, pp.
6
7
.
11.
Haneda
,
T.
, and
Akisawa
,
A.
,
2017
, “
Technological Assessment of PEFC Power Generation System Using By-Product Hydrogen Produced From a Caustic Soda Plant
,”
Int. J. Hydrogen Energy
,
42–45
, pp.
3240
3249
.
12.
Ihonen
,
J.
,
Koski
,
P.
,
Pulkkinen
,
V.
,
Ker€anen
,
T.
,
Karimaki
,
H.
,
Auvinen
,
S.
,
Nikiforow
,
K.
,
Kotisaari
,
M.
,
Tuiskula
,
H.
, and
Viitakangas
,
J.
,
2017
, “
Operational Experiences of PEMFC Pilot Plant Using Low Grade Hydrogen From Sodium Chlorate Production Process
,”
Int. J. Hydrogen Energy
,
42
, pp.
27269
27283
.
13.
Keranen
,
T. M.
,
Karimaki
,
H.
,
Nikiforow
,
K.
,
Kukkonen
,
S.
,
Uusalo
,
H.
,
Viitakangas
,
J.
, and
Ihoen
,
J.
,
2014
, “
A 50 kW PEMFC Pilot Plant Operated With Industry Grade Hydrogen—System Design and Site Integration
,”
Fuel Cells
,
14
, pp.
701
708
.
14.
Haneda
,
T.
, and
Akisawa
,
A.
,
2017
, “
Technical, Economic, and Environmental Assessment of PEFC Power Generation System Using Surplus Hydrogen Produced From an Oil Refinery
,”
ASME J. Electrochem. Energy Conv. Stor.
,
14
(
4
), p.
041001
.
15.
Rose
,
R.
,
2015
, “
ENE-FARM Installed 120,000 Residential Fuel Cell Units
,” www.h2-international.com
16.
Nielsen
,
R.
, and
Prag
,
C. B.
,
2018
, “
Learning Points From Demonstration of 1000 Fuel Cell Based Micro-CHP Units
,” http://enefield.eu
17.
Di Marcoberardino
,
G.
,
Chiarabaglio
,
L.
,
Manzolini
,
G.
, and
Campanari
,
S.
,
2019
, “
A Techno-Economic Comparison of Micro-Cogeneration Systems Based on Polymer Electrolyte Membrane Fuel Cell for Residential Applications
,”
Appl. Energy
,
239
, pp.
692
705
.
18.
Herrmann
,
A.
,
Mädlow
,
A.
, and
Krause
,
H.
,
2018
, “
Key Performance Indicators Evaluation of a Domestic Hydrogen Fuel Cell CHP
,”
Int. J. Hydrogen Energy
,
in press
.10.1016/j.ijhydene.2018.06.014
19.
Campanari
,
S.
,
Valenti
,
G.
,
Macchi
,
E.
,
Lozza
,
G.
, and
Ravidà
,
N.
,
2014
, “
Development of a Micro-Cogeneration Laboratory and Testing of a Natural Gas CHP Unit Based on PEM Fuel Cells
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
714
720
.
20.
DEMCOPEM-2MW Project Official Website,
http://www.demcopem-2mw.eu/. Accessed Dec. 15, 2017.
21.
EuroChlor
,
2017
, “
Chlorine Industry Review 2016–2017
,” Brussels.
22.
Baturina
,
O.
,
Garsany
,
Y.
,
Gould
,
B.
, and
Swider-Lyons
,
K.
,
2012
, “
Contaminant-Induced Degradation
,”
PEM Fuel Cell Failure Mode Analysis
,
H.
Wang
,
H.
Li
, and
X.-Z.
Yuan
, eds.,
CRC Press, Taylor & Francis Group
,
London
, pp.
199
241
.
23.
AspenTech Software Website,
https://www.aspentech.com/. Accessed Dec. 15, 2017.
24.
Bacquart
,
T.
,
Murugan
,
A.
,
Carré
,
M.
,
Gozlan
,
B.
,
Auprêtre
,
F.
,
Haloua
,
F.
, and
Aarhaug
,
T. A.
,
2018
, “
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples From Steam Methane Reforming and Electrolysis (Water and Chlor-Alkali) Production Processes Model
,”
Int. J. Hydrogen Energy
,
43
(
26
), pp.
11872
11883
.
25.
Guandalini
,
G.
,
Foresti
,
S.
,
Campanari
,
S.
,
Coolegem
,
J.
, and
ten Have
,
J.
,
2017
, “
Simulation of a 2 MW PEM Fuel Cell Plant for Hydrogen Recovery From Chlor-Alkali Industry
,”
8th International Conference on Applied Energy—ICAE2016, Energy Procedia
, Vol.
105
, pp.
1839
1846
.
26.
Siegel
,
C.
,
2008
, “
Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells
,”
Energy
,
33
(
9
), pp.
1331
1352
.
27.
U.S. DOE (Department of Energy)
,
2004
,
Fuel Cell Handbook
,
7th ed
,
EG&G Services, Inc.
,
Morgantown, WV
.
28.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
.
29.
Springer
,
T. E.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
30.
Smit
,
M.
,
2014
, “
Towards 40,000 Hours of Operation for Nedstack’s FCS XXL PEM Fuel Cell Stacks
,”
Fuel Cells Bull.
,
8
, pp.
12
15
.
31.
Campanari
,
S.
, and
Hayes
,
P.
,
2018
, “
DEMCOPEM 2MW Demonstration of a Combined Heat and Power 2 MWe PEM Fuel Cell Generator and Integration Into an Existing Chlorine Production Plant
,”
FCH-JU Programme Review Days 2018
,
Brussels
,
Nov. 14–15
, www.fch.europa.eu
You do not currently have access to this content.