In this work, a model of a proton exchange membrane fuel cell (PEMFC) is presented. A dynamic performance characterization is performed to assess the cell transient response to input variables. The model used in the simulation considers three different phenomena: mass transfer, thermodynamics, and electrochemistry. The main sources of voltage loss are presented: activation, electrical resistance, and concentration. The model is constructed to avoid the use of fitted parameters, reducing the experimentation required for its validation. Hence, the electrochemical model is parameterized by physical variables, including material properties and geometrical characteristics. The model is demonstrated as a test-bed for PEMFC control system design and evaluation. Results demonstrate that the steady-state and dynamic behavior of the system are represented accurately. A case study is included to show the functionality of the model. In the case study, the effect of the purge valves at the fuel cell discharges is analyzed under different scenarios. Regular purges of the cathode and the anode are shown to achieve a good performance in the system avoiding reactant starvation in the cell. A closed-loop dynamic response is included as an example of the model capabilities for the design of fuel cell control strategies. Two variables were selected to be controlled: voltage and pressure difference across the membrane. A multivariate control strategy was tested and its dynamic response was analyzed. It was found that there was a strong interaction between the control loops, making the control of the system a challenge.

References

References
1.
Cindrella
,
L.
,
Kannan
,
A.
,
Ahmad
,
R.
, and
Thommes
,
M.
,
2009
, “
Surface Modification of Gas Diffusion Layers by Inorganic Nanomaterials for Performance Enhancement of Proton Exchange Membrane Fuel Cells at Low RH Conditions
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6377
6383
.
2.
Chun
,
J. H.
,
Park
,
K. T.
,
Jo
,
D. H.
,
Lee
,
J. Y.
,
Kim
,
S. G.
,
Park
,
S. H.
,
Lee
,
E. S.
,
Jyoung
,
J.-Y.
, and
Kim
,
S. H.
,
2011
, “
Development of a Novel Hydrophobic/Hydrophilic Double Micro Porous Layer for Use in a Cathode Gas Diffusion Layer in PEMFC
,”
Int. J. Hydrogen Energy
,
36
(
14
), pp.
8422
8428
.
3.
Park
,
S.
,
Lee
,
J.-W.
, and
Popov
,
B. N.
,
2008
, “
Effect of PTFE Content in Microporous Layer on Water Management in PEM Fuel Cells
,”
J. Power Sources.
,
177
, pp. 457–463.
4.
Zhu
,
W.
,
Ignaszak
,
A.
,
Song
,
C.
,
Baker
,
R.
,
Hui
,
R.
,
Zhang
,
J.
,
Nan
,
F.
,
Botton
,
G.
,
Ye
,
S.
, and
Campbell
,
S.
,
2012
, “
Nanocrystalline Tungsten Carbide (WC) Synthesis/Characterization and Its Possible Application as a PEM Fuel Cell Catalyst Support
,”
Electrochim. Acta
,
61
, pp.
198
206
.
5.
Alhazmi
,
N.
,
Ingham
,
D.
,
Ismail
,
M.
,
Hughes
,
K.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2013
, “
Effect of the Anisotropic Thermal Conductivity of GDL on the Performance of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
603
611
.
6.
Mehrpooya
,
M.
,
Nouri
,
G.
,
Eikani
,
M. H.
,
Khandan
,
N.
, and
Hajinezhad
,
A.
,
2015
, “
Effects of Membrane Electrode Assembly Fabrication Parameters on the Proton Exchange Membrane Fuel Cell Performance
,”
Int. J. Ambient Energy
,
33
(
1
), pp.
1
6
.
7.
Dupuis
,
A.-C.
,
2011
, “
Proton Exchange Membranes for Fuel Cells Operated at Medium Temperatures: Materials and Experimental Techniques
,”
Prog. Mater. Sci.
,
56
(
3
), pp.
289
327
.
8.
Peighambardoust
,
S. J.
,
Rowshanzamir
,
S.
, and
Amjadi
,
M.
,
2010
, “
Review of the Proton Exchange Membranes for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
35
(
17
), pp.
9349
9384
.
9.
Suzuki
,
T.
,
Hashizume
,
R.
, and
Hayase
,
M.
,
2015
, “
Effect of Blending Carbon Nanoparticles and Nanotubes on the Formation of Porous Structure and the Performance of Proton Exchange Membrane Fuel Cell Catalyst Layers
,”
J. Power Sources
,
286
, pp.
109
117
.
10.
Zhang
,
Y.
,
Smirnova
,
A.
,
Verma
,
A.
, and
Pitchumani
,
R.
,
2015
, “
Design of a Proton Exchange Membrane (PEM) Fuel Cell With Variable Catalyst Loading
,”
J. Power Sources
,
291
, pp.
46
57
.
11.
Burheim
,
O. S.
,
Su
,
H.
,
Hauge
,
H. H.
,
Pasupathi
,
S.
, and
Pollet
,
B. G.
,
2014
, “
Study of Thermal Conductivity of PEM Fuel Cell Catalyst Layers
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9397
9408
.
12.
Cheng
,
S. J.
, and
Liu
,
J. J.
,
2015
, “
Nonlinear Modeling and Identification of Proton Exchange Membrane Fuel Cell (PEMFC)
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
9452
9461
.
13.
Saadi
,
A.
,
Becherif
,
M.
,
Hissel
,
D.
, and
Ramadan
,
H. S.
,
2017
, “
Dynamic Modeling and Experimental Analysis of PEMFCs: A Comparative Study
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
1544
1557
.
14.
Al-Hadeethi
,
F.
,
Al-Nimr
,
M.
, and
Al-Safadi
,
M.
,
2015
, “
Using the Multiple Regression Analysis With Respect to ANOVA and 3D Mapping to Model the Actual Performance of PEM (Proton Exchange Membrane) Fuel Cell at Various Operating Conditions
,”
Energy
,
90
, pp.
475
482
.
15.
Kahveci
,
E. E.
, and
Taymaz
,
I.
,
2014
, “
Experimental Investigation on Water and Heat Management in a PEM Fuel Cell Using Response Surface Methodology
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10655
10663
.
16.
Daud
,
W.
,
Rosli
,
R.
,
Majlan
,
E.
,
Hamid
,
S.
, and
Mohamed
,
R.
,
2017
, “
PEM Fuel Cell System Control: A Review
,”
Renewable Energy
,
113
, pp.
620
638
.
17.
Justesen
,
K. K.
,
Andreasen
,
S. J.
, and
Shaker
,
H. R.
,
2013
, “
Dynamic Modeling of a Reformed Methanol Fuel Cell System Using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models
,”
ASME
Paper No. FuelCell2013-18110.
18.
Feroldi
,
D.
,
Serra
,
M.
, and
Riera
,
J.
,
2009
, “
Energy Management Strategies Based on Efficiency Map for Fuel Cell Hybrid Vehicles
,”
J. Power Sources
,
190
(
2
), pp.
387
401
.
19.
Gomez
,
A.
,
Raj
,
A.
,
Sasmito
,
A. P.
, and
Shamim
,
T.
,
2014
, “
Effect of Operating Parameters on the Transient Performance of a Polymer Electrolyte Membrane Fuel Cell Stack With a Dead-End Anode
,”
Appl. Energy
,
130
, pp. 692–701.
20.
Shin
,
D.
,
Lee
,
K.
, and
Chang
,
N.
,
2016
, “
Fuel Economy Analysis of Fuel Cell and Supercapacitor Hybrid Systems
,”
Int. J. Hydrogen Energy
,
41
(
3
), pp.
1381
1390
.
21.
Yan
,
W. M.
,
Soong
,
C. Y.
,
Chen
,
F.
, and
Chu
,
H. S.
,
2005
, “
Transient Analysis of Reactant Gas Transport and Performance of PEM Fuel Cells
,”
J. Power Sources
,
143
(
1–2
), pp.
48
56
.
22.
Ziogou
,
C.
,
Papadopoulou
,
S.
,
Georgiadis
,
M. C.
, and
Voutetakis
,
S.
,
2013
, “
On-Line Nonlinear Model Predictive Control of a PEM Fuel Cell System
,”
J. Process Control
,
23
(
4
), pp.
483
492
.
23.
Meidanshahi
,
V.
, and
Karimi
,
G.
,
2012
, “
Dynamic Modeling, Optimization and Control of Power Density in a PEM Fuel Cell
,”
Appl. Energy
,
93
, pp.
98
105
.
24.
Ziogou
,
C.
,
Voutetakis
,
S.
,
Papadopoulou
,
S.
, and
Georgiadis
,
M. C.
,
2011
, “
Modeling, Simulation and Experimental Validation of a PEM Fuel Cell System
,”
Comput. Chem. Eng.
,
35
(
9
), pp.
1886
1900
.
25.
Benmouiza
,
K.
, and
Cheknane
,
A.
,
2018
, “
Analysis of Proton Exchange Membrane Fuel Cells Voltage Drops for Different Operating Parameters
,”
Int. J. Hydrogen Energy
,
43
(
6
), pp.
3512
3519
.
26.
Chavan
,
S. L.
, and
Talange
,
D. B.
,
2017
, “
Modeling and Performance Evaluation of PEM Fuel Cell by Controlling Its Input Parameters
,”
Energy
,
138
, pp.
437
445
.
27.
Wilberforce
,
T.
,
El-Hassan
,
Z.
,
Khatib
,
F. N.
,
Al Makky
,
A.
,
Baroutaji
,
A.
,
Carton
,
J. G.
,
Thompson
,
J.
, and
Olabi
,
A. G.
,
2017
, “
Modelling and Simulation of Proton Exchange Membrane Fuel Cell With Serpentine Bipolar Plate Using MATLAB
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
25639
25662
.
28.
McKay
,
D. A.
,
Ott
,
W.
, and
Stefanopoulou
,
A. G.
,
2005
, “
Modeling, Parameter Identification, and Validation of Reactant and Water Dynamics for a Fuel Cell Stack
,”
ASME
Paper No. IMECE2005-81484.
29.
Cheng
,
S.
,
Fang
,
C.
,
Xu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2015
, “
Model-Based Temperature Regulation of a PEM Fuel Cell System on a City Bus
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13566
13575
.
30.
Panos
,
C.
,
Kouramas
,
K.
,
Georgiadis
,
M.
, and
Pistikopoulos
,
E.
,
2012
, “
Modelling and Explicit Model Predictive Control for PEM Fuel Cell Systems
,”
Chem. Eng. Sci.
,
67
(
1
), pp.
15
25
.
31.
Matraji
,
I.
,
Laghrouche
,
S.
, and
Wack
,
M.
,
2012
, “
Pressure Control in a PEM Fuel Cell Via Second Order Sliding Mode
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16104
16116
.
32.
Sanchez
,
V. M.
,
Barbosa
,
R.
,
Arriaga
,
L.
, and
Ramirez
,
J. M.
,
2014
, “
Real Time Control of Air Feed System in a PEM Fuel Cell by Means of an Adaptive Neural-Network
,”
Int. J. Hydrogen Energy
,
153
(29), pp. 16750–16762.
33.
Zhan
,
Y.
,
Wang
,
H.
, and
Zhu
,
J.
,
2012
, “
Modelling and Control of Hybrid UPS System With Backup PEM Fuel Cell/Battery
,”
Int. J. Electr. Power Energy Syst.
,
43
(
1
), pp.
1322
1331
.
34.
Fărcaş
,
A. C.
, and
Dobra
,
P.
,
2014
, “
Adaptive Control of Membrane Conductivity of PEM Fuel Cell
,”
Procedia Technol.
,
12
, pp.
42
49
.
35.
Hatti
,
M.
,
Meharrar
,
A.
, and
Tioursi
,
M.
,
2011
, “
Power Management Strategy in the Alternative Energy Photovoltaic/PEM Fuel Cell Hybrid System
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
5104
5110
.
36.
Segura
,
F.
,
Andújar
,
J. M.
, and
Durán
,
E.
,
2011
, “
Analog Current Control Techniques for Power Control in PEM Fuel-Cell Hybrid Systems: A Critical Review and a Practical Application
,”
IEEE Trans. Ind. Electron.
,
58
(
4
), pp.
1171
1184
.
37.
Ou
,
K.
,
Wang
,
Y.-X.
,
Li
,
Z.-Z.
,
Shen
,
Y.-D.
, and
Xuan
,
D.-J.
,
2015
, “
Feedforward Fuzzy-PID Control for Air Flow Regulation of PEM Fuel Cell System
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
1
10
.
38.
Rakhtala
,
S.
, and
Shafiee Roudbari
,
E.
,
2016
, “
Fuzzy PID Control of a Stand-Alone System Based on PEM Fuel Cell
,”
Int. J. Electr. Power Energy Syst.
,
78
, pp.
576
590
.
39.
Swain
,
P.
, and
Jena
,
D.
,
2015
, “
PID Control Design for the Pressure Regulation of PEM Fuel Cell
,” International Conference on Recent Developments in Control, Automation and Power Engineering (
RDCAPE
), Noida, India, Mar. 12–13, pp. 286–291.
40.
Gruber
,
J. K.
,
Bordons
,
C.
, and
Oliva
,
A.
,
2012
, “
Nonlinear MPC for the Airflow in a PEM Fuel Cell Using a Volterra Series Model
,”
Control Eng. Pract.
,
20
(
2
), pp.
205
217
.
41.
Kunusch
,
C.
,
Puleston
,
P. F.
,
Mayosky
,
M. A.
, and
Fridman
,
L.
,
2013
, “
Experimental Results Applying Second Order Sliding Mode Control to a PEM Fuel Cell Based System
,”
Control Eng. Pract.
,
21
(
5
), pp.
719
726
.
42.
Matraji
,
I.
,
Laghrouche
,
S.
,
Jemei
,
S.
, and
Wack
,
M.
,
2013
, “
Robust Control of the PEM Fuel Cell Air-Feed System Via Sub-Optimal Second Order Sliding Mode
,”
Appl. Energy
,
104
, pp.
945
957
.
43.
Özbek
,
M.
,
Wang
,
S.
,
Marx
,
M.
, and
Söffker
,
D.
,
2013
, “
Modeling and Control of a PEM Fuel Cell System: A Practical Study Based on Experimental Defined Component Behavior
,”
J. Process Control
,
23
(
3
), pp.
282
293
.
44.
Fontalvo
,
V.
,
Sanjuan
,
M.
, and
Gomez
,
H.
,
2015
, “
MPC Control of Dynamic PEM Fuel Cell System
,”
ASME
Paper No. IMECE2015-51913.
45.
Nam
,
J. H.
, and
Kaviany
,
M.
,
2003
, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4595
4611
.
46.
Zemansky
,
M. W.
, and
Dittman
,
R. H.
,
1979
, “
Calor y Termodinámica
,” Quinta, McGraw Hill, Madrid, Spain.
47.
Dutta
,
S.
, and
Shimpalee
,
S.
,
2001
, “
Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
J. Heat Mass Transfer
,
44
(
11
), pp.
2029
2042
.
48.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc
,
138
(
8
), pp.
2334
2342
.
49.
Müller
,
E. A.
, and
Stefanopoulou
,
A. G.
,
2006
, “
Analysis, Modeling, and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(2), p. 99.
50.
Barbir
,
F.
,
2013
,
PEM Fuel Cells
, N. Sammes, ed.,
Elsevier
, San Diego, CA.
51.
Liu
,
H.
,
Li
,
P.
, and
Wang
,
K.
,
2013
, “
Optimization of PEM Fuel Cell Flow Channel Dimensions-Mathematic Modeling Analysis and Experimental Verification
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9835
9846
.
52.
Robin
,
C.
,
Gerard
,
M.
,
D'Arbigny
,
J.
,
Schott
,
P.
,
Jabbour
,
L.
, and
Bultel
,
Y.
,
2015
, “
Development and Experimental Validation of a PEM Fuel Cell 2D-Model to Study Heterogeneities Effects Along Large-Area Cell Surface
,”
Int. J. Hydrogen Energy
,
40
(
32
), pp.
10211
10230
.
53.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2006
, “
A Modeling Study on Concentration Overpotentials of a Reversible Solid Oxide Fuel Cell
,”
J. Power Sources
,
163
(
1
), pp.
460
466
.
54.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
3rd ed.
,
Cambridge University Press
, Cambridge, UK.
55.
Wang
,
L.
,
2003
, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
,
28
(
11
), pp.
1263
1272
.
56.
ISA
,
2007
, “
Flow Equations for Sizing Control Valves
,” International Society for Automation, Durham, NC, Standard No. ISA-75.01.01-2007.
You do not currently have access to this content.