Thermal management system (TMS) plays an essential part in improving the safety and durability of the battery pack. Prior studies mainly focused on controlling the maximum temperature and temperature difference of the battery pack. Little attention has been paid to the influence of the TMS on thermal runaway (TR) prevention of battery packs. In this paper, a heat pipe-based thermal management system (HPTMS) is designed and investigated to illustrate both the capabilities of temperature controlling and TR propagation preventing. Good thermal performance could be achieved under discharge and charge cycles of both 2 C rate and 3 C rate while the equivalent heat dissipation coefficient of the HPTMS is calculated above 70 W/(m2·K). In the TR propagation test triggered by overcharge, the surface temperature of the battery adjacent to the overcharged cell can be controlled below 215 °C, the onset temperature of TR obtained by the adiabatic TR test of a single cell. Therefore, TR propagation is prevented due to the high heat dissipation of the HPTMS. To conclude, the proposed HPTMS is an effective solution for the battery pack to maintain the operating temperature and improve the safety level under abuse conditions.

References

References
1.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
, pp.
3243
3262
.
2.
Shah
,
N.
,
Balsara
,
S.
,
Banerjee
,
M.
,
Chintapalli
,
A. P.
,
Cocco
,
W. K. S.
,
Chiu
,
I.
,
Lahiri
,
S.
,
Martha
,
A.
,
Mistry
,
P. P.
,
Mukherjee
,
V.
,
Ramadesigan
,
C. S.
,
Sharma
,
V. R.
,
Subramanian
,
S.
,
Mitra
, and
A.
Jain.
,
2017
, “
State of the Art and Future Research Needs for Multi-scale Analysis of Li-Ion Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
2
), p.
020801
.
3.
Zhang
,
S. S.
,
2006
, “
The Effect of the Charging Protocol on the Cycle Life of a Li-Ion Battery
,”
J. Power Sources
,
161
(
2
), pp.
1385
1391
.
4.
Vetter
,
J.
,
Nov
,
P.
,
Wagner
,
M. R.
, and
Veit
,
C.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.
5.
Wang
,
Q.
,
Jiang
,
B.
,
Li
,
B.
, and
Yan
,
Y.
,
2016
, “
A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
106
128
.
6.
Selman
,
J. R.
,
Al
,
S.
,
Uchida
,
I.
, and
Hirano
,
Y.
,
2001
, “
Cooperative Research on Safety Fundamentals of Lithium Batteries
,”
J. Power Sources
,
98
, pp.
726
732
.
7.
Lin
,
H.
,
Chua
,
D.
,
Salomon
,
M.
,
Shiao
,
H.
, and
Hendrickson
,
M.
,
2001
, “
Low-Temperature Behavior of Li-Ion Cells
,”
Electrochem. Solid-State Lett.
,
4
(6), pp.
71
73
.
8.
Bandhauer
,
T. M.
,
2011
, “
Electrochemical-Thermal Modeling and Microscale Phase Change for Passive Internal Thermal Management of Lithium Ion Batteries
,” Office of Scientific and Technical Information, Oak Ridge, TN,
Report
.https://smartech.gatech.edu/handle/1853/42900?show=full
9.
Darcovich
,
K.
,
MacNeil
,
D. D.
,
Recoskie
,
S.
,
Cadic
,
Q.
,
Ilinca
,
F.
, and
Kenney
,
B.
,
2018
, “
Coupled Numerical Approach for Automotive Battery Pack Lifetime Estimates With Thermal Management
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
2
), p.
021004
.
10.
Ye
,
Y.
,
Shi
,
Y.
, and
Tay
,
A. A. O.
,
2012
, “
Electro-Thermal Cycle Life Model for Lithium Iron Phosphate Battery
,”
J. Power Sources
,
217
, pp.
509
518
.
11.
Gong
,
X.
,
Xiong
,
R.
, and
Mi
,
C. C.
,
2014
, “
Study of the Characteristics of Battery Packs in Electric Vehicles With Parallel-Connected Lithium-Ion Battery Cells
,”
IEEE Appl. Power Electron. Conf. Expo.
,
51
(
2
), pp.
1872
1879
.
12.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
13.
Jhu
,
C.
,
Wang
,
Y.
,
Wen
,
C.
, and
Shu
,
C.
,
2012
, “
Thermal Runaway Potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 Batteries Determined With Adiabatic Calorimetry Methodology
,”
Appl. Energy
,
100
, pp.
127
131
.
14.
Kizilel
,
R.
,
Sabbah
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2009
, “
An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs
,”
J. Power Sources
,
194
(
2
), pp.
1105
1112
.
15.
Khateeb
,
S. A.
,
Amiruddin
,
S.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2005
, “
Thermal Management of Li-Ion Battery With Phase Change Material for Electric Scooters: Experimental Validation
,”
J. Power Sources
,
142
(
1–2
), pp.
345
353
.
16.
Shah
,
K.
,
Vishwakarma
,
V.
, and
Jain
,
A.
,
2016
, “
Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
030801
.
17.
Pesaran
,
A. A.
,
Burch
,
S.
, and
Keyser
,
M.
,
1999
, “
An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs
,”
Fourth Vehicle Thermal Management Systems
, London, May 24–27, p.
24
.
18.
Chalise
,
D.
,
Shah
,
K.
,
Prasher
,
R.
, and
Jain
,
A.
,
2017
, “
Conjugate Heat Transfer Analysis of Air/Liquid Cooling of a Li-Ion Battery Pack
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(11), p.
011008
.
19.
Lopez
,
C. F.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2016
, “
Evaluation of Combined Active and Passive Thermal Management Strategies for Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031007
.
20.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Design of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Appl. Energy
,
126
, pp.
266
280
.
21.
Chung
,
C. A.
,
Yang
,
S.
,
Yang
,
C.
,
Hsu
,
C.
, and
Chiu
,
P.
,
2013
, “
Experimental Study on the Hydrogen Charge and Discharge Rates of Metal Hydride Tanks Using Heat Pipes to Enhance Heat Transfer
,”
Appl. Energy
,
103
, pp.
581
587
.
22.
Tran
,
T.
,
Harmand
,
S.
,
Desmet
,
B.
, and
Filangi
,
S.
,
2014
, “
Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
551
558
.
23.
Zhao
,
R.
,
Gu
,
J.
, and
Liu
,
J.
,
2015
, “
An Experimental Study of Heat Pipe Thermal Management System With Wet Cooling Method for Lithium Ion Batteries
,”
J. Power Sources
,
273
, pp.
1089
1097
.
24.
Jiang
,
B.
,
Xue
,
Q. F.
,
Sun
,
H. L.
,
Li
,
B.
,
Zou
,
H. M.
, and
Yan.
,
Y. Y.
,
2014
, “
Experimental Investigation on EV Battery Cooling and Heating by Heat Pipes
,”
Appl. Therm. Eng.
,
88
, pp.
54
60
.
25.
Putra
,
N.
,
Ariantara
,
B.
, and
Pamungkas
,
R. A.
,
2016
, “
Experimental Investigation on Performance of Lithium-Ion Battery Thermal Management System Using Flat Plate Loop Heat Pipe for Electric Vhicle Application
,”
Appl. Therm. Eng.
,
99
, pp.
784
789
.
26.
Yuan
,
W.
,
Yan
,
Z.
,
Tan
,
Z.
,
Chen
,
W.
, and
Tang
,
Y.
,
2016
, “
Heat-Pipe-Based Thermal Management and Temperature Characteristics of Li-Ion Batteries
,”
Can. J. Chem. Eng.
,
94
(
10
), pp.
1901
1908
.
27.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
28.
Motloch
,
C. G.
,
Christopheresen
,
J. P.
,
Belt
,
J. R.
,
Wright
,
R. B.
,
Hunt
,
G. L.
,
Sutula
,
R. A.
,
Duong
,
T.
,
Tartamella
,
T. J.
,
Haskins
,
H. J.
, and
Miller
,
T. J.
,
2002
, “
High-Power Battery Testing Procedures and Analytical Methodologies for HEV's
,”
SAE Trans.
,
111
, pp.
797
802
.https://www.jstor.org/stable/44699489
29.
Catherino
,
H. A.
,
2006
, “
Complexity in Battery Systems: Thermal Runaway in VRLA Batteries
,”
J. Power Sources
,
158
(
2
), pp.
977
986
.
30.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
31.
He
,
F.
, and
Ma
,
L.
,
2015
, “
Thermal Management of Batteries Employing Active Temperature Control and Reciprocating Cooling Flow
,”
Int. J. Heat Mass Transfer
,
83
, pp.
164
172
.
32.
Jin
,
L. W.
,
Lee
,
P. S.
,
Kong
,
X. X.
,
Fan
,
Y.
, and
Chou
,
S. K.
,
2014
, “
Ultra-Thin Minichannel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
113
, pp.
1786
1794
.
33.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
34.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
.
35.
Wu
,
W.
,
Yang
,
X.
,
Zhang
,
G.
,
Chen
,
K.
, and
Wang
,
S.
,
2017
, “
Experimental Investigation on the Thermal Performance of Heat Pipe-Assisted Phase Change Material Based Battery Thermal Management System
,”
Energy Convers. Manage.
,
138
, pp.
486
492
.
36.
Ye
,
Y.
,
Shi
,
Y.
,
Saw
,
L. H.
, and
Tay
,
A. A. O.
,
2016
, “
Performance Assessment and Optimization of a Heat Pipe Thermal Management System for Fast Charging Lithium Ion Battery Packs
,”
Int. J. Heat Mass Transfer
,
92
, pp.
893
903
.
37.
Feng
,
X.
,
Fang
,
M.
, and
He
,
X.
,
2015
, “
Thermal Runaway Propagation Model for Designing a Safer Battery Pack With 25 Ah LiNixCoyMnzO2 Large Format Lithium Ion Battery
,”
Appl. Energy
,
154
, pp.
74
91
.
38.
Lin
,
K.
, and
Wong
,
S.
,
2013
, “
Performance Degradation of Flattened Heat Pipes
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
46
54
.
39.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
, and
Tay
,
A. A. O.
,
2015
, “
Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries During Fast Charging
,”
Appl. Therm. Eng.
,
86
, pp.
281
291
.
40.
Feng
,
X.
, and
Fang
,
M.
,
2014
, “
Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate
,”
J. Power Sources
,
255
, pp.
294
301
.
41.
Feng
,
O. M.
, and
Jing Sun
,
X.
,
2015
, “
Characterization of Penetration Induced Thermal Runaway Propagation Process Within a Large Format Lithium Ion Battery Module
,”
J. Power Sources
,
275
, pp.
261
273
.
42.
Forgez
,
C.
,
Vinh
,
D.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
.
43.
Li
,
Z.
,
Zhang
,
J.
,
Wu
,
B.
,
Huang
,
J.
,
Nie
,
Z.
,
Sun
,
S.
,
An
,
F.
, and
Wu
,
N.
,
2013
, “
Examining Temporal and Spatial Variations of Internal Temperature in Large-Format Laminated Battery With Embedded Thermocouples
,”
J. Power Sources
,
241
, pp.
536
553
.
44.
Ren
,
D.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Zheng
,
S.
,
Li
,
J.
, and
He
,
X.
,
2017
, “
An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery
,”
J. Power Sources
,
364
, pp.
328
340
.
45.
Sharma
,
N.
, and
Peterson
,
V. K.
,
2013
, “
Overcharging a Lithium-Ion Battery: Effect on the LixC6 Negative Electrode Determined by in Situ Neutron Diffraction
,”
J. Power Sources
,
244
, pp.
695
701
.
You do not currently have access to this content.