The processes and mechanisms of LiNiO2 synthesis during the high-temperature solid state method, using Ni(OH)2 precursor and different lithium salts (Li2CO3 and LiOH), were revealed by the thermal (TG–DTA) and structural (X-ray diffraction (XRD)) analyses. Morphology characterization (scanning electron microscopy (SEM)) and the soluble lithium titration are carried out to support the findings. The results show that the synthetic processes of LiNiO2 generally include raw materials' dehydration, oxidation, and combination; also, the existence of lithium salts makes the oxidation of Ni(OH)2 relatively easier. Comparing the two lithium salts involved in the reactions, LiOH will bring about a transition oxide (Ni8O10) and lower the initial reaction temperature for LiNiO2 generation. In addition, a decent temperature under 800 °C, a preheat treatment in 500–600 °C, and a properly longer heating time are suggested to be significant for obtaining the ideal LiNiO2 materials.

References

References
1.
Schipper
,
F.
, and
Aurbach
,
D.
,
2016
, “
A Brief Review: Past, Present and Future of Lithium Ion Batteries
,”
Russ. J. Electrochem.
,
52
(
12
), pp.
1095
1121
.
2.
Li
,
H.
,
Wang
,
Z.
,
Chen
,
L.
, and
Huang
,
X.
,
2010
, “
Research on Advanced Materials for Li+ Ion Batteries
,”
Adv. Mater.
,
21
(
45
), pp.
4593
4607
.
3.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
4.
Liu
,
W.
,
Oh
,
P.
,
Liu
,
X.
,
Lee
,
M.
,
Cho
,
W.
,
Chae
,
S.
,
Kim
,
Y.
, and
Cho
,
J.
,
2015
, “
Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
15
), pp.
4440
4458
.
5.
Yoon
,
C. S.
,
Choi
,
M.-J.
,
Jun
,
D.-W.
,
Zhang
,
Q.
,
Kaghazchi
,
P.
,
Kim
,
K.-H.
, and
Sun
,
Y.-K.
,
2018
, “
Cation Ordering of Zr-Doped LiNiO2 Cathode for Lithium-Ion Batteries
,”
Chem. Mater.
,
30
(
5
), pp.
1808
1814
.
6.
Schoonman
,
J.
,
Tuller
,
H. L.
, and
Kelder
,
E. M.
,
1999
, “
Defect Chemical Aspects of Lithium-Ion Battery Cathodes
,”
J. Power Sources
,
81–82
(
9
), pp.
44
48
.
7.
Song
,
M. Y.
,
Kwon
,
I. H.
,
Song
,
J.
, and
Shim
,
S.
,
2009
, “
Electrochemical Properties of Li1–z(Ni1–yFey)1+zO2 Synthesized by the Combustion Method in an Air Atmosphere
,”
J. Appl. Electrochem.
,
39
(
5
), pp.
617
625
.
8.
Tsutomu
,
O.
, and
Yoshinari
,
M.
,
2001
, “
Layered Lithium Insertion Material of LiCo0.33Ni0.33Mn0.33O2 for Lithium-Ion Batteries
,”
Chem. Lett.
,
30
(
7
), pp.
642
643
.
9.
Lu
,
Z.
,
MacNeil
,
D. D.
, and
Dahn
,
J. R.
,
2001
, “
Layered Li[NixCo1–2xMnx]O2 Cathode Materials for Lithium-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
4
(
12
), pp.
A200
A203
.
10.
Deptula
,
A.
,
Lada
,
W.
,
Olczak
,
T.
,
Wawszczak
,
D.
,
Brykala
,
M.
,
Zaza
,
F.
, and
Goretta
,
K. C.
,
2010
, “
Novel Sol-Gel Synthesis of LiMn2O4 and LiNixCo1–xO2 Powders
,”
Adv. Sci. Technol.
,
63
, pp.
14
23
.
11.
Pouillerie
,
C.
,
Croguennec
,
L.
, and
Delmas
,
C.
,
2000
, “
The LixNi1−yMgyO2 (y = 0.05, 0.10) System: Structural Modifications Observed Upon Cycling
,”
Solid State Ionics
,
132
(
1–2
), pp.
15
29
.
12.
Liu
,
Z.
,
Zhen
,
H.
,
Kim
,
Y.
, and
Liang
,
C.
,
2011
, “
Synthesis of LiNiO2 Cathode Materials With Homogeneous Al Doping at the Atomic Level
,”
J. Power Sources
,
196
(
23
), pp.
10201
10206
.
13.
Kwon
,
S. N.
,
Mumm
,
D. R.
,
Park
,
H. R.
, and
Song
,
M. Y.
,
2016
, “
Phase Transitions During Charging and Discharging and Electrochemical Performances of LiNiO2 Doped With Gallium
,”
J. Ceram. Process. Res.
,
17
(
6
), pp.
653
658
.http://jcpr.kbs-lab.co.kr/file/JCPR_vol.17_2016/JCPR17-6/25.2016-085_653-658.pdf
14.
Kobayashi
,
Y.
,
Tabuchi
,
M.
,
Miyashiro
,
H.
, and
Kuriyama
,
N.
,
2017
, “
A New Design of Highly Reversible LiNiO2: Defect Formation in Transition Metal Site
,”
J. Power Sources
,
364
, pp.
156
162
.
15.
Hou
,
P.
,
Yin
,
J.
,
Ding
,
M.
,
Huang
,
J.
, and
Xu
,
X.
,
2017
, “
Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives
,”
Small
,
13
(
45
), p.
1701802
.
16.
Palacin
,
M. R.
,
Larcher
,
D.
,
Audemer
,
A.
,
Sacepee
,
N.
,
Amatucci
,
G. G.
, and
Tarascon
,
J. M.
,
1997
, “
Low-Temperature Synthesis of LiNiO2—Reaction Mechanism, Stability, and Electrochemical Properties
,”
J. Electrochem. Soc.
,
144
(
12
), pp.
4226
4236
.
17.
Arai
,
H.
,
Okada
,
S.
,
Sakurai
,
Y.
, and
Yamaki
,
J-I.
,
1997
, “
Reversibility of LiNiO2 Cathode
,”
Solid State Ionics
,
95
(
3–4
), pp.
275
282
.
18.
Song
,
M. Y.
, and
Lee
,
R.
,
2002
, “
Synthesis by Sol–Gel Method and Electrochemical Properties of LiNiO2 Cathode Material for Lithium Secondary Battery
,”
J. Power Sources
,
111
(
1
), pp.
97
103
.
19.
Kalyani
,
P.
,
Kalaiselvi
,
N.
, and
Renganathan
,
N. G.
,
2003
, “
Microwave-Assisted Synthesis of LiNiO2—A Preliminary Investigation
,”
J. Power Sources
,
123
(
1
), pp.
53
60
.
20.
Yang
,
H. X.
,
Dong
,
Q. F.
,
Hu
,
X. H.
,
Ai
,
X. P.
, and
Li
,
S. X.
,
1999
, “
Preparation and Characterization of LiNiO2 Synthesized From Ni(OH)2 and LiOH·H2O
,”
J. Power Sources
,
79
(
2
), pp.
256
261
.
21.
Kalyani
,
P.
, and
Kalaiselvi
,
N.
,
2005
, “
Various Aspects of LiNiO2 Chemistry: A Review
,”
Sci. Technol. Adv. Mater.
,
6
(
6
), pp.
689
703
.
22.
Bang
,
E. Y.
,
Mumm
,
D. R.
,
Park
,
H. R.
, and
Song
,
M. Y.
,
2012
, “
Comparison of Lithium Nickel Cobalt Oxides Synthesized From NiO, Co3O4, and LiOH·H2O or Li2CO3 by Solid-State Reaction Method
,”
Ceram. Int.
,
38
(
7
), pp.
5699
5705
.
23.
Todorov
,
Y. M.
, and
Numata
,
K.
,
2004
, “
Effects of the Li:(Mn + Co + Ni) Molar Ratio on the Electrochemical Properties of LiMn1/3Co1/3Ni1/3O2 Cathode Material
,”
Electrochim. Acta
,
50
(
2–3
), pp.
495
499
.
24.
Murali
,
N.
,
Sailaja
,
J. M.
,
Aregai
,
T.
,
Margarette
,
S. J.
, and
Veeraiah
,
V.
,
2016
, “
Effect of Calcination Temperature on the Physical Properties of Layered LiNiO2 Prepared by Solid-State Reaction Method
,”
Int. Lett. Chem., Phys. Astron.
,
67
, pp.
31
35
.
25.
Kim
,
B. H.
,
Kim
,
J. H.
,
Song
,
M. Y.
,
Ida
,
T.
, and
Ishizawa
,
N.
,
2007
, “
The Effect of Oxygen Pressure on the Synthesis of LiNiO2
,”
Solid State Phenom.
,
124–126
, pp.
1043
1046
.
26.
Ettel
,
V. A.
, and
Mosoiu
,
M. A.
,
1977
, “
Preparation of Nickel Black
,” U.S. Patent No.
US4006216A
.https://patents.google.com/patent/US4006216
27.
Bossu
,
F. P.
, and
Margerum
,
D. W.
,
1977
, “
Electrode Potentials of Nickel((III,II)-Peptide Complexes
,”
Inorg. Chem.
,
16
(
5
), pp.
1210
1214
.
28.
Kaplan
,
V.
,
Wachtel
,
E.
, and
Lubomirsky
,
I.
,
2011
, “
Conditions of Stability for (Li2CO3 + Li2O) Melts in Air
,”
J. Chem. Thermodyn.
,
43
(
11
), pp.
1623
1627
.
29.
Kanno
,
R.
,
Kubo
,
H.
,
Kawamoto
,
Y.
,
Kamiyama
,
T.
,
Izumi
,
F.
,
Takeda
,
Y.
, and
Takano
,
M.
,
1994
, “
Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides
,”
J. Solid State Chem.
,
110
(
2
), pp.
216
225
.
30.
Xiao
,
Z.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2015
, “
Synthesis of High-Capacity LiNi0.8Co0.1Mn0.1O2 Cathode by Transition Metal Acetates
,”
Trans. Nonferrous Met. Soc. China
,
25
(
5
), pp.
1568
1574
.
31.
Wang
,
W.
,
Qiu
,
W.
, and
Ding
,
Q.
,
2015
,
Nickel Cobalt Manganese Based Cathode Materials for Li-Ion Batteries: Process Technology and Production Application
,
Chemical Industry Press
,
Beijing, China
, Chap. 4 (in Chinese).
You do not currently have access to this content.