A multiple model adaptive control (MMAC) methodology is used to control the critical parameters of a solid oxide fuel cell gas turbine (SOFC-GT) cyberphysical simulator, capable of characterizing 300 kW hybrid plants. The SOFC system is composed of a hardware balance of plant (BoP) component, and a high fidelity FC model implemented in software. This study utilizes empirically derived transfer functions (TFs) of the BoP facility to derive the MMAC gains for the BoP system, based on an estimation algorithm which identifies current operating points. The MMAC technique is useful for systems having a wide operating envelope with nonlinear dynamics. The practical implementation of the adaptive methodology is presented through simulation in the matlab/simulink environment.

References

References
1.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R.
,
2003
, “
Preliminary Results of a Cold Flow Test in a Fuel Cell Gas Turbine Hybrid Simulation Facility
,”
ASME
Paper No. GT2003-38460
.
2.
Tucker
,
D.
,
Liese
,
E.
, and
Gemmen
,
R.
,
2009
, “
Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation
,” International Colloquium on Environmentally Preferred Advanced Power Generation, Newport Beach, CA, Feb. 10–12, Paper No. ICEPAG2009-1021.
3.
Tucker
,
D.
, and
Gemmen, L. Lawson
,
R.
,
2005
, “
Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,”
ASME
Paper No. PWR2005-50127
.
4.
Winkler
,
W.
,
Nehter
,
P.
,
Tucker
,
D.
,
Williams
,
M.
, and
Gemmen
,
R.
,
2006
, “
General Fuel Cell Hybrid Synergies and Hybrid System Testing Status
,”
J. Power Sources
,
159
(
1
), pp.
656
666
.
5.
Williams
,
M. C.
,
Strakey
,
J.
, and
Surdoval
,
W.
,
2006
, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
,
159
(
2
), pp.
1241
1247
.
6.
Pezzini
,
P.
,
Banta
,
L.
,
Traverso
,
A.
, and
Tucker
,
D.
,
2014
, “
Decentralized Control Strategy for Fuel Cell Turbine Hybrid Systems
,”
57th Annual ISA Power Industry Division Symposium
, Scottsdale, AZ, June 1–6, Paper No. POWID2014-52.
7.
Pezzini
,
P.
,
Celestin
,
S.
, and
Tucker
,
D.
,
2015
, “
Control Impacts of Cold-Air Bypass on Pressurized Fuel Cell Turbine Hybrids
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
1
), p.
011006
.
8.
Tsai
,
A.
,
Banta
,
L.
,
Tucker
,
D.
, and
Gemmen
,
R.
,
2010
, “
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041008
.
9.
Tsai
,
A.
,
Tucker
,
D.
, and
Groves
,
C.
,
2010
, “
Improved Controller Performance of Selected Hybrid SOFC-GT Plant Signals Based on Practical Control Schemes
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071702
.
10.
Tucker
,
D.
,
Lawson
,
L.
,
Smith
,
T.
, and
Haynes
,
C.
,
2006
, “
Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation
,”
ASME
Paper No. FUELCELL2006-97107
.
11.
Tucker
,
D.
,
Ford
,
J.
,
Haynes
,
C.
,
VanOsdol
,
J.
,
Liese
,
E.
, and
Lawson
,
L.
,
2012
, “
Evaluation of Methods for Thermal Management in a Coal Based SOFC Turbine Hybrid Through Numerical Simulation
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p.
041004
.
12.
Traverso
,
A.
,
Tucker
,
D.
, and
Haynes
,
C.
,
2012
, “
Preliminary Experimental Results of Integrated Gasification Fuel Cell Operation Using Hardware Simulation
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071701
.
13.
Tucker
,
D.
,
Smith
,
T.
, and
Lawson
,
L.
,
2006
, “
Characterization of Bypass Control Methods in a Coal Based Fuel Cell Turbine Hybrid
,”
ASME
Paper No. ICEPAG2006-24008
.
14.
Zhou
,
N.
,
Yang
,
C.
,
Tucker
,
D.
,
Pezzini
,
P.
, and
Traverso
,
A.
,
2005
, “
Transfer Function Development for Control of a Fuel Cell Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
40
(
4
), pp.
1967
1979
.
15.
Tsai
,
A.
,
Banta
,
L.
,
Tucker
,
D.
, and
Lawson
,
L.
,
2009
, “
Determination of an Empirical Transfer Function of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Via Frequency Response Analysis
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
3
), p.
034505
.
16.
Chang
,
C.
, and
Athans
,
M.
,
1978
, “
State Estimation for Discrete Systems With Switching Parameters
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-14
(
3
), pp.
418
425
.
17.
Narendra
,
K. S.
, and
Xiang
,
C.
,
2000
, “
Adaptive Control of Discrete-Time Systems Using Multiple Models
,”
IEEE Trans. Autom. Control
,
45
(
9
), pp.
1669
1686
.
18.
Athans
,
M.
,
1977
, “
The Stochastic Control of the F-8C Aircraft Using a Multiple Model Adaptive Control (MMAC) Method—Part I: Equilibrium Flight
,”
IEEE Trans. Autom. Control
,
AC-22
(
5
), pp.
768
780
.
19.
Tsai
,
A.
,
Tucker
,
D.
, and
Emami
,
T.
,
2016
, “
Multiple Model Adaptive Estimation of a Hybrid Solid Oxide Fuel Cell Gas Turbine Plant Simulator
,”
ASME
Paper No. FUELCELL2016-59656.
20.
Lewis
,
F.
,
1992
,
Applied Optimal Control and Estimation, Digital Design and Implementation
,
Prentice Hall
,
Englewood Cliff, NJ
.
21.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
,
1998
,
Digital Control of Dynamic Systems
,
3rd ed.
,
Addison Wesley Longman, Inc., Menlo Park, CA
.
You do not currently have access to this content.