A hybrid power system consisting of an intermediate temperature solid oxide fuel cell (SOFC) and a lithium-ion battery is conceptually designed for water taxi applications. The sizing method of such a hybrid system is developed based on the resistance, acceleration performance, cruising cycle, and the speeds of a water taxi under the conditions of daily operation time and charge neutrality over a 24 h period. A techno-economic analysis (TEA) is performed for the proposed hybrid system and compared with other two power sources, a typical internal combustion engine (ICE), and a battery-only system. A feasibility study based on the weight and the volume of the hybrid system is conducted. The potential reduction of greenhouse gases (GHG) emissions is calculated and compared with the GHG emissions from water taxies powered by an ICE and a battery-only, respectively.

References

References
1.
ERA-LEARN 2020 Project
,
2012
, “
Auxiliary Power Generator Based on PEM Fuel Cell for Nautic Applications
,” accessed Dec. 6, 2018, https://www.era-learn.eu/network-information/networks/eurostars/eurostars-cut-off-2/auxiliary-power-generator-based-on-pem-fuel-cell-for-nautic-applications
2.
Dai
,
Z.
,
Wang
,
L.
, and
Yang
,
S.
,
2017
, “
Fuel Cell Based Auxiliary Power Unit in More Electric Aircraft
,” IEEE
Transportation Electrification Conference and Expo
, Asia-Pacific (
ITEC Asia-Pacific
), Harbin, China, Aug. 7–10, Paper No. 978-1-5386-2894-2/17.
3.
Biret
,
L. V.
,
Godjevac
,
M.
,
Visser
,
K.
, and
Aravind
,
P. V.
,
2016
, “
A Review of Fuel Cell Systems for Maritime Applications
,”
J. Power Sources
,
327
, pp.
345
364
.
4.
Rechberger
,
J.
,
Kaupert
,
A.
,
Hagerskans
,
J.
, and
Blum
,
L.
,
2016
, “
Demonstration of the First European SOFC APU on a Heavy Duty Truck
,”
Transp. Res. Procedia
,
14
, pp.
3676
3685
.
5.
Nehter
,
P.
,
Kleinohl
,
N.
,
Bauschulte
,
A.
, and
Leites
,
K.
,
2014
, “
Diesel Based Sofc-APU for Marine Applications
,”
11th European SOFC and SOE Forum
, Lucerne, Switzerland, July 1–4, pp. 1–8.https://www.researchgate.net/publication/308415919_DIESEL_BASED_SOFC-APU_FOR_MARINE_APPLICATIONS
6.
Brett
,
D. J. L.
,
Aguiar
,
P.
,
Brandon
,
N. P.
,
Bull
,
R. N.
,
Hayes
,
G. W.
,
Lillie
,
K.
,
Mellors
,
C.
,
Millward
,
M.
,
Smith
,
C.
, and
Tilley
,
A. R.
,
2006
, “
Project ABSOLUTE: A ZEBRA Battery/Intermediate Temperature Solid Oxide Fuel Cell Hybrid for Automotive Applications
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
3
), pp.
254
262
.
7.
Brett
,
D. J. L.
,
Aguiar
,
P.
,
Brandon
,
N. P.
,
Bull
,
R. N.
,
Galloway
,
R. C.
,
Hayes
,
G. W.
,
Lillie
,
K.
,
Mellors
,
C.
,
Smith
,
C.
, and
Tilley
,
A. R.
,
2006
, “
Concept and System Design for a ZEBRA Battery–Intermediate Temperature Solid Oxide Fuel Cell Hybrid Vehicle
,”
J. Power Sources
,
157
(
2
), pp.
782
798
.
8.
Brett
,
D. J. L.
,
Aguiar
,
P.
, and
Brandon
,
N. P.
,
2006
, “
System Modelling and Integration of an Intermediate Temperature Solid Oxide Fuel Cell and ZEBRA Battery for Automotive Applications
,”
J. Power Resour.
,
163
(
1
), pp.
514
522
.
9.
Brandon
,
N. P.
,
Aguiar
,
P.
,
Brett
,
D. J. L.
,
Bull
,
R. N.
,
Coop
,
I.
,
Galloway
,
R. C.
,
Hayes
,
G. W. G.
,
Lillie
,
K.
,
Mellors
,
C.
,
Millward
,
M.
, and
Tilley
,
A. R.
,
2006
, “
Design and Characterization of a Fuel Cell-Battery Powered Hybrid System for Vehicle Applications
,”
IEEE
Vehicle Power & Propulsion Conference
, Windsor, UK, Sept. 6–8.
10.
Aguiar
,
P.
,
Brett
,
D. J. L.
, and
Brandon
,
N. P.
,
2007
, “
Feasibility Study and Techno-Economic Analysis of an SOFC/Battery Hybrid System for Vehicle Applications
,”
J. Power Sources
,
171
(
1
), pp.
186
197
.
11.
ThyssenKrupp Marine Systems
,
2015
, “
Sunfire 50 kW SOFC for Ship-Integrated Fuel Cell Project in Germany
,”
Fuel Cells Bull.
,
2015
(11), pp.
3
4
.
12.
Leites
,
K.
,
Bauschulte
,
A.
,
Dragon
,
M.
,
Krummrich
,
S.
, and
Nehter
,
D. P.
,
2012
, “
SchIBZ—Design of Different Diesel Based Fuel Cell Systems for Seagoing Vessels and Their Evaluation
,”
ECS Trans.
,
4
(
1
), pp.
49
58
.http://ecst.ecsdl.org/content/42/1/49.abstract
13.
San
,
B.-G.
,
Zhou
,
P.-L.
, and
Clealand
,
D.
,
2010
, “
Dynamic Modeling of Tubular SOFC for Marine Power System
,”
J. Mar. Sci. Appl.
,
9
(
3
), pp.
231
240
.
14.
Transport Canada
,
2017
, “
Small Vessel Register C05458BC
,” Transport Canada, Ottawa, ON, Canada, accessed Dec. 6, 2018, http://wwwapps.tc.gc.ca/Saf-Sec-Sur/4/vrqs-srib/eng/vessel-registrations/advanced-search
15.
Roh
,
M.-I.
, and
Lee
,
K.-Y.
,
2018
,
Computational Ship Design
,
Springer
, Berlin, Chap. 5.
16.
Environment and Climate Change Canada
,
2017
, “
Vancouver Historical Wind Speed
,” Environment and Climate Change Canada, Vancouver, BC, Canada, accessed Dec. 4, 2018, https://vancouver.weatherstats.ca/metrics/wind_speed.html
17.
Pedersen
,
B. P.
, and
Larsen
,
J.
,
2009
, “
Modeling of Ship Propulsion Performance
,”
World Maritime Technology Conference
(
WMTC2009
), Mumbai, India, Jan. 21–24, Paper No. WMTC 2009.http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/5702/pdf/imm5702.pdf
18.
Qnovo
,
2017
, “
The Cost Components of a Lithium Ion Battery
,” Qnovo, Newark, CA, accessed Dec. 6, 2018, https://qnovo.com/82-the-cost-components-of-a-battery/
19.
National Research Council
,
2010
, “
Review of the Research Program of the FreedomCAR and Fuel Partnership
,” The National Academies Press, Washington, DC,
Third Report
.https://www.nap.edu/catalog/12939/review-of-the-research-program-of-the-freedomcar-and-fuel-partnership
20.
Natural Resources Canada
,
2017
, “
Propane Price
,” Natural Resources Canada, Ottawa, ON, Canada, accesssed Dec. 6, 2018, http://www.nrcan.gc.ca/energy/fuel-prices/4801
21.
Yanmar
,
2017
, “
Sailboat and Small Craft Engines
,” Yanmar, Osaka Prefecture, Japan, accessed Dec. 6, 2018, http://www.yanmarmarine.com/Products/Sailboat-and-small-craft-engines/
22.
BCHydro
,
2017
, “
General Service Rate for Business
,” BCHydro, Vancouver, BC, Canada, accessed Dec. 6, 2018, https://www.bchydro.com/accounts-billing/rates-energy-use/electricity-rates/business-rates.html
23.
Saxman
,
D.
,
2016
, “
Solid Oxide Fuel Cells: Technologies and Global Markets
,” Global Information, Kawasaki, Japan, accessed Dec. 10, 2018, https://www.bccresearch.com/market-research/energy-and-resources/solid-oxide-fuel-cells- egy048b.html
24.
Tesla
,
2017
, “
Powerwall
,” Tesla, Palo Alto, CA, accessed Dec. 6, 2018, https://www.tesla.com/en_CA/powerwall
25.
Lu
,
R.
,
Yang
,
A.
,
Xue
,
Y.
,
Xu
,
L.
, and
Zhu
,
C.
,
2010
, “
Analysis of the Key Factors Affecting the Energy Efficiency of Batteries in Electric Vehicle
,”
World Electric Veh. J.
,
4
(
1
), pp.
9
13
.
26.
Ministry of Environment, Victoria B.C.
,
2016
, “
2016/17 B.C. Best Practices Methodology for Quantifying Greenhouse Gas Emissions
,”
Ministry of Environment, Victoria, BC
, Canada, accessed Dec. 6, 2018, http://docplayer.net/22343145-2016-17-b-c-best-practices-methodology-for-quantifying-greenhouse-gas-emissions.html
27.
U.S. EPA
,
2015
, “
Emission Factors for Greenhouse Gas Inventories
,” United States Environmental Protection Agency, Washington, DC, accessed Dec. 6, 2018, https://www.epa.gov/sites/production/files/2015-11/documents/emission-factors_nov_2015.pdf
28.
ITTC
,
2002
, “
ITTC-Recommended Procedures, Resistance Uncertainty Analysis, Example for Resistance Test
,” International Towing Tank Conference (ITTC), Shanghai, China, accessed Dec. 6, 2018, http://www.engr.mun.ca/veitch/ittc-uncertainty-resistance.pdf
29.
Holtrop
,
J.
, and
Mennen
,
G. G. J.
,
1982
, “
An Approximate Power Prediction Method
,”
Int. Shipbuild. Prog.
,
29
(
335
), pp.
166
170
.
30.
Molland
,
A. F.
,
Turnock
,
S. R.
, and
Hudson
,
D. A.
,
2011
,
Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.