This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.

References

References
1.
Santoro
,
C.
,
Arbizzani
,
C.
,
Erable
,
B.
, and
Ieropoulos
,
I.
,
2017
, “
Microbial Fuel Cells: From Fundamentals to Applications: A Review
,”
J. Power Sources
,
356
, pp.
225
244
.
2.
Logan
,
B. E.
, and
Regan
,
J. M.
,
2006
, “
Microbial Fuel Cells-Challenges and Applications
,”
Environ. Sci. Technol.
,
40
(
17
), pp.
5172
5180
.
3.
Huang
,
L.
, and
Logan
,
B. E.
,
2008
, “
Electricity Generation and Treatment of Paper Recycling Wastewater Using a Microbial Fuel Cell
,”
Appl. Microbiol. Biotechnol.
,
80
(
2
), pp.
349
355
.
4.
Min
,
B.
,
Kim
,
J.
,
Oh
,
S.
,
Regan
,
J. M.
, and
Logan
,
B. E.
,
2005
, “
Electricity Generation From Swine Wastewater Using Microbial Fuel Cells
,”
Water Res.
,
39
(
20
), pp.
4961
4968
.
5.
Massé
,
D.
, and
Masse
,
L.
, 2001, “
The Effect of Temperature on Slaughterhouse Wastewater Treatment in Anaerobic Sequencing Batch Reactors
,”
Bioresour. Technol.
,
76
(2), pp. 91–98.
6.
Liu
,
H.
,
Cheng
,
S.
, and
Logan
,
B. E.
,
2005
, “
Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration
,”
Environ. Sci. Technol.
,
39
(
14
), pp.
5488
5493
.
7.
Schröder
,
U.
,
Nießen
,
J.
, and
Scholz
,
F.
,
2003
, “
A Generation of Microbial Fuel Cells With Current Outputs Boosted by More Than One Order of Magnitude
,”
Angew. Chem. Int. Ed. Engl.
,
42
(
25
), pp.
2880
2883
.
8.
Chaudhuri
,
S. K.
, and
Lovley
,
D. R.
,
2003
, “
Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells
,”
Nat. Biotechnol.
,
21
(
10
), pp.
1229
1232
.
9.
Morris
,
J. M.
,
Jin
,
S.
,
Wang
,
J.
,
Zhu
,
C.
, and
Urynowiczc
,
M. A.
,
2007
, “
Lead Dioxide as an Alternative Catalyst to Platinum in Microbial Fuel Cells
,”
Urynowicz, Electrochem. Commun.
,
9
(
7
), pp.
1730
1734
.
10.
Gil
,
G.-C.
,
Chang
,
I.-S.
,
Kim
,
B. H.
,
Kim
,
M.
,
Jang
,
J.-K.
,
Park
,
H. S.
, and
Kim
,
H. J.
,
2003
, “
Operational Parameters Affecting the Performannce of a Mediator-Less Microbial Fuel Cell
,”
Biosens. Bioelectron.
,
18
(
4
), pp.
327
334
.
11.
He
,
Z.
, and
Angenent
,
L. T.
,
2006
, “
Application of Bacterial Biocathodes in Microbial Fuel Cells
,”
Electroanalysis
,
18
(
19–20
), pp.
2009
2015
.
12.
Liu
,
H.
, and
Logan
,
B. E.
,
2004
, “
Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane
,”
Environ. Sci. Technol.
,
38
(
14
), pp.
4040
4046
.
13.
Rabaey
,
K.
,
Clauwaert
,
P.
,
Aelterman
,
P.
, and
Verstraete
,
W.
,
2005
, “
Tubular Microbial Fuel Cells for Efficient Electricity Generation
,”
Environ. Sci. Technol.
,
39
(
20
), pp.
8077
8082
.
14.
Tartakovsky
,
B.
, and
Guiot
,
S. R.
,
2006
, “
A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors
,”
Biotechnol. Prog.
,
22
(
1
), pp.
241
246
.
15.
Zhang
,
E.
,
Xu
,
W.
,
Diao
,
G.
, and
Shuang
,
C.
,
2006
, “
Electricity Generation From Acetate and Glucose by Sedimentary Bacterium Attached to Electrode in Microbial-Anode Fuel Cells
,”
J. Power Sources
,
161
(
2
), pp.
820
825
.
16.
Zhou
,
M.
,
Chi
,
M.
,
Luo
,
J.
,
He
,
H.
, and
Jin
,
T.
,
2011
, “
An Overview of Electrode Materials in Microbial Fuel Cells
,”
J. Power Sources
,
196
(
10
), pp.
4427
4435
.
17.
Kim
,
J. R.
,
Min
,
B.
, and
Logan
,
B. E.
,
2005
, “
Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production
,”
App. Microbiol. Biotechnol.
,
68
(
1
), pp.
23
30
.
18.
Lowy
,
D. A.
,
Tender
,
L. M.
,
Zeikus
,
J. G.
,
Park
,
D. H.
, and
Lovley
,
D. R.
,
2006
, “
Harvesting Energy From the Marine Sediment–Water Interface II: Kinetic Activity of Anode Materials
,”
Biosens. Bioelectron.
,
21
(
11
), pp.
2058
2063
.
19.
Park
,
H. I.
,
Sanchez
,
D.
,
Cho
,
S. K.
, and
Yun
,
M.
,
2008
, “
Bacterial Communities on Electron-Beam Pt-Deposited Electrodes in a Mediator-Less Microbial Fuel Cell
,”
Environ. Sci. Technol.
,
42
(
16
), pp.
6243
6249
.
20.
ter Heijne
,
A.
,
Hamelers
,
H. V. M.
,
Saakes
,
M.
, and
Buisman
,
C. J. N.
,
2008
, “
Performance of Non-Porous Graphite and Titanium-Based Anodes in Microbial Fuel Cells
,”
Buisman, Electrochimin. Acta
,
53
(
18
), pp.
5697
5703
.
21.
Martin
,
E.
,
Tartakovsky
,
B.
, and
Savadogo
,
O.
,
2011
, “
Cathode Materials Evaluation in Microbial Fuel Cells: A Comparison of Carbon, Mn2O3, Fe2O3 and Platinum Materials
,”
Electrochim. Acta
,
58
, pp.
58
66
.
22.
Lu
,
A.
,
Li
,
Y.
,
Jin
,
S.
,
Ding
,
H.
,
Zeng
,
C.
,
Wang
,
X.
, and
Wang
,
C.
,
2009
, “
Microbial Fuel Cell Equipped With a Photocatalytic Rutile-Coated Cathode
,”
Energy Fuels
,
24
, pp.
1184
1190
.
23.
Lv
,
Z.
,
Xie
,
D.
,
Yue
,
X.
,
Feng
,
C.
, and
Wei
,
C.
,
2012
, “
Ruthenium Oxide-Coated Carbon Felt Electrode: A Highly Active Anode for Microbial Fuel Cell Applications
,”
J. Power Sources
,
210
, pp.
26
31
.
24.
Zhang
,
Y.
,
Hu
,
Y.
,
Li
,
S.
,
Sun
,
J.
, and
Hou
,
B.
,
2011
, “
Manganese Dioxide-Coated Carbon Nanotubes as an Improved Cathodic Catalyst for Oxygen Reduction in a Microbial Fuel Cell
,”
J. Power Sources
,
196
(
22
), pp.
9284
9289
.
25.
Gong
,
X.-B.
,
You
,
S.-J.
,
Wang
,
X.-H.
,
Zhang
,
J.-N.
,
Gan
,
Y.
, and
Ren
,
N.-Q.
,
2014
, “
A Novel Stainless Steel Mesh/Cobalt Oxide Hybrid Electrode for Efficient Catalysis of Oxygen Reduction in a Microbial Fuel Cell
,”
Biosens. Bioelectron.
,
55
, pp.
237
241
.
26.
Chen
,
Y.-M.
,
Wang
,
C.-T.
,
Yang
,
Y.-C.
, and
Chen
,
W.-J.
,
2013
, “
Application of Aluminum-Alloy Mesh Composite Carbon Cloth for the Design of Anode/Cathode Electrodes in Escherichia Coli Microbial Fuel Cell
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
11131
11137
.
27.
Song
,
T.-S.
,
Wang
,
D.-B.
,
Wang
,
H.
,
Li
,
X.
,
Liang
,
Y.
, and
Xie
,
J.
,
2015
, “
Cobalt Oxide/Nanocarbon Hybrid Materials as Alternative Cathode Catalyst for Oxygen Reduction in Microbial Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
10
), pp.
3868
3874
.
28.
Ghasemi
,
M.
,
Ismail
,
M.
,
Kamarudin
,
S. K.
,
Saeedfar
,
K.
,
Daud
,
W. R. W.
,
Hassan
,
S. H.
,
Heng
,
L. Y.
,
Alam
,
J.
, and
Oh
,
S.-E.
,
2013
, “
Carbon Nanotube as an Alternative Cathode Support and Catalyst for Microbial Fuel Cells
,”
App. Energy
,
102
, pp.
1050
1056
.
29.
Liu
,
X.-W.
,
Li
,
W.-W.
, and
Yu
,
H.-Q.
,
2014
, “
Cathodic Catalysts in Bioelectrochemical Systems for Energy Recovery From Wastewater
,”
Chem. Soc. Rev.
,
43
(
22
), pp.
7718
7745
.
30.
Cui
,
Y.
,
Briscoe
,
J.
, and
Dunn
,
S.
,
2013
, “
Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3-Influence on the Carrier Separation and Stern Layer Formation
,”
Chem. Mater.
,
25
(
21
), pp.
4215
4223
.
31.
Shoeib
,
M. A.
,
Abdelsalam
,
O. E.
,
Khafagi
,
M. G.
, and
Hammam
,
R. E.
,
2012
, “
Synthesis of Cu2O Nanocrystallites and Their Adsorption and Photocatalysis Behavior
,”
Adv. Powder Technol.
,
23
(
3
), pp.
298
304
.
32.
Zhao
,
Q.
,
Wang
,
J.
,
Li
,
Z.
,
Qiao
,
Y.
,
Jin
,
C.
, and
Guo
,
Y.
,
2016
, “
Preparation of Cu2O/Exfoliated Graphite Composites With High Visible Light Photocatalytic Performance and Stability
,”
Ceram. Int.
,
42
(
11
), pp.
13273
13277
.
33.
Chen
,
J.
,
Liu
,
X.
,
Zhang
,
H.
,
Liu
,
P.
,
Li
,
G.
,
An
,
T.
, and
Zhao
,
H.
,
2016
, “
Soft-Template Assisted Synthesis of Mesoporous CuO/Cu2O Composite Hollow Microspheres as Efficient Visible-Light Photocatalyst
,”
Mater. Lett.
,
182
, pp.
47
51
.
34.
Grabowska
,
E.
,
2016
, “
Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties—A Review
,”
App. Catal. B: Environ.
,
186
, pp.
97
126
.
35.
Stock
,
M.
, and
Dunn
,
S.
,
2012
, “
Influence of the Ferroelectric Nature of Lithium Niobate to Drive Photocatalytic Dye Decolorization Under Artificial Solar Light
,”
J. Phys. Chem. C
,
116
(
39
), pp.
20854
20859
.
36.
Louki
,
S.
,
Touach
,
N.
,
Benzaouak
,
A.
,
Salar-García
,
M. J.
,
Ortiz-Martínez
,
V. M.
,
Hernández-Fernández
,
F. J.
,
Ríos
,
A. P.
,
El Mahi
,
M.
, and
Lotfi
,
E. M.
,
2017
, “
Preparation of New Ferroelectric Li0.95Ta0.57Nb0.38Cu0.15O3 Materials as Photocatalysts in Microbial Fuel Cells
,”
Can. J. Chem. Eng.
,
9999
(8), pp.
1656
1662
.https://onlinelibrary.wiley.com/doi/full/10.1002/cjce.23117
37.
Hernández-Fernández
,
F.
,
de los Ríos
,
A. P.
,
Mateo-Ramírez
,
F.
,
Godínez
,
C.
,
Lozano-Blanco
,
L.
,
Moreno
,
J.
, and
Tomás-Alonso
,
F.
,
2015
, “
New Application of Supported Ionic Liquids Membranes as Proton Exchange Membranes in Microbial Fuel Cell for Waste Water Treatment
,”
Chem. Eng. J.
,
279
, pp.
115
119
.
38.
Benzaouak
,
A.
,
Touach
,
N.
,
Ortiz-Martínez
,
V. M.
,
Salar-García
,
M. J.
,
Hernández-Fernández
,
F. J.
,
Pérez de los Ríos
,
A.
,
El Mahi
,
M.
, and
Lotfi
,
E. M.
,
2017
, “
Ferroelectric LiTaO3 as Novel Photo‐Electrocatalyst in Microbial Fuel Cells
,”
Environ. Prog. Sustainable Energy
,
36
(5), pp. 1568–1574.https://onlinelibrary.wiley.com/doi/full/10.1002/ep.12609
39.
Touach
,
N.
,
Ortiz-Martínez
,
V.
,
Salar-García
,
M.
,
Benzaouak
,
A.
,
Hernández-Fernández
,
F.
,
de Ríos
,
A.
,
El Mahi
,
M.
, and
Lotfi
,
E. M.
,
2017
, “
On the Use of Ferroelectric Material LiNbO3 as Novel Photocatalyst in Wastewater-Fed Microbial Fuel Cells
,”
Particuology
,
34
, pp.
147
155
.
40.
Gautier
,
J.
,
Restovic
,
A.
, and
Chartier
,
P.
,
1989
, “
Electrocatalyse de la Réduction de L'oxygène Sur Oxyde Mixte: Cu1+x Mn2−xO4 en Milieu Alcalin. Etude Par Électrode Disque-Anneau
,”
J. Appl. Electrochem.
,
19
(
1
), pp.
28
36
.
41.
De Jongh
,
P.
,
Vanmaekelbergh
,
D.
, and
Kelly
,
J.
,
1999
, “
Cu2O: Electrodeposition and Characterization
,”
Chem. Mater.
,
11
(
12
), pp.
3512
3517
.
You do not currently have access to this content.