In this study, lithium (Li) intercalation-induced stress of LiCoO2 with anisotropic properties using three-dimensional (3D) microstructures has been studied systematically. Phase field method was employed to generate LiCoO2 polycrystals with varying grain sizes. Li diffusion and stresses inside the polycrystalline microstructure with different grain size, grain orientation, and grain boundary diffusivity were investigated using finite element method. The results show that the anisotropic mechanical properties and Li concentration-dependent volume expansion coefficient have a very small influence on the Li chemical diffusion coefficients. The low partial molar volume of LiCoO2 leads to this phenomenon. The anisotropic mechanical properties have a large influence on the magnitude of stress generation. Since the Young's modulus of LiCoO2 along the diffusion pathway (a–b axis) is higher than that along c–axis, the Li concentration gradient is larger along the diffusion pathway. Thus, for the same intercalation-induced strain, the stress generation will be higher (∼40%) than that with isotropic mechanical properties as discussed in our previous study (Wu, L., Zhang, Y., Jung, Y.-G., and Zhang, J., 2015, “Three-Dimensional Phase Field Based Finite Element Study on Li Intercalation-Induced Stress in Polycrystalline LiCoO2,” J. Power Sources, 299, pp. 57–65). This work demonstrates the importance to include anisotropic property in the model.

References

References
1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
2.
Wang
,
H.
,
Jang
,
Y. I.
,
Huang
,
B.
,
Sadoway
,
D. R.
, and
Chiang
,
Y. M.
,
1999
, “
TEM Study of Electrochemical Cycling—Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
473
480
.
3.
Chen
,
G.
,
Song
,
X.
, and
Richardson
,
T. J.
,
2006
, “
Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition
,”
Electrochem. Solid-State Lett.
,
9
(
6
), pp.
A295
A298
.
4.
Gabrisch
,
H.
,
Wilcox
,
J.
, and
Doeff
,
M. M.
,
2008
, “
TEM Study of Fracturing in Spherical and Plate-Like LiFePO4 Particles
,”
Electrochem. Solid-State Lett.
,
11
(
3
), pp.
A25
A29
.
5.
Boulineau
,
A.
,
Simonin
,
L.
,
Colin
,
J.-F.
,
Canévet
,
E.
,
Daniel
,
L.
, and
Patoux
,
S.
,
2012
, “
Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 During the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy
,”
Chem. Mater.
,
24
(
18
), pp.
3558
3566
.
6.
Wu
,
L.
,
Xiao
,
X.
,
Wen
,
Y.
, and
Zhang
,
J.
,
2016
, “
Three-Dimensional Finite Element Study on Stress Generation in Synchrotron X-Ray Tomography Reconstructed Nickel–Manganese–Cobalt Based Half Cell
,”
J. Power Sources
,
336
, pp.
8
18
.
7.
Wu
,
L.
,
Wen
,
Y.
, and
Zhang
,
J.
,
2016
, “
Three-Dimensional Finite Element Study on Li Diffusion Induced Stress in FIB-SEM Reconstructed LiCoO2 Half Cell
,”
Electrochim. Acta
,
222
, pp.
814
820
.
8.
Zhang
,
J.
,
Lu
,
B.
,
Song
,
Y.
, and
Ji
,
X.
,
2012
, “
Diffusion Induced Stress in Layered Li-Ion Battery Electrode Plates
,”
J. Power Sources
,
209
, pp.
220
227
.
9.
Yamakawa
,
S.
,
Nagasako
,
N.
,
Yamasaki
,
H.
,
Koyama
,
T.
, and
Asahi
,
R.
,
2018
, “
Phase-Field Modeling of Stress Generation in Polycrystalline LiCoO2
,”
Solid State Ionics
,
319
, pp.
209
217
.
10.
Lu
,
Y.
,
Zhang
,
P.
,
Wang
,
F.
,
Zhang
,
K.
, and
Zhao
,
X.
,
2018
, “
Reaction-Diffusion-Stress Coupling Model for Li-Ion Batteries: The Role of Surface Effects on Electrochemical Performance
,”
Electrochim. Acta
,
274
, pp.
359
369
.
11.
Wu
,
L.
, and
Zhang
,
J.
,
2015
, “
Ab Initio Study of Anisotropic Mechanical Properties of LiCoO2 During Lithium Intercalation and Deintercalation Process
,”
J. Appl. Phys.
,
118
(
22
), p.
225101
.
12.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1019
A1030
.
13.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electrochem.
,
10
(
5
), pp.
293
319
.
14.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2010
, “
Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
A508
A516
.
15.
Woodford
,
W. H.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2010
, “‘
Electrochemical Shock’ of Intercalation Electrodes: A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
A1052
A1059
.
16.
Sun
,
G.
,
Sui
,
T.
,
Song
,
B.
,
Zheng
,
H.
,
Lu
,
L.
, and
Korsunsky
,
A. M.
,
2016
, “
On the Fragmentation of Active Material Secondary Particles in Lithium Ion Battery Cathodes Induced by Charge Cycling
,”
Extreme Mech. Lett.
,
9
, pp.
449
458
.
17.
Song
,
B.
,
Sui
,
T.
,
Ying
,
S.
,
Li
,
L.
,
Lu
,
L.
, and
Korsunsky
,
A. M.
,
2015
, “
Nano-Structural Changes in Li-Ion Battery Cathodes During Cycling Revealed by FIB-SEM Serial Sectioning Tomography
,”
J. Mater. Chem. A
,
3
(
35
), pp.
18171
18179
.
18.
Han
,
S.
,
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2013
, “
Numerical Study of Grain Boundary Effect on Li+ Effective Diffusivity and Intercalation-Induced Stresses in Li-Ion Battery Active Materials
,”
J. Power Sources
,
240
, pp.
155
167
.
19.
Wu
,
L.
,
Zhang
,
Y.
,
Jung
,
Y.-G.
, and
Zhang
,
J.
,
2015
, “
Three-Dimensional Phase Field Based Finite Element Study on Li Intercalation-Induced Stress in Polycrystalline LiCoO2
,”
J. Power Sources
,
299
, pp.
57
65
.
20.
Pavoni
,
F. H.
,
Sita
,
L. E.
,
dos Santos
,
C. S.
,
da Silva
,
S. P.
,
da Silva
,
P. R. C.
, and
Scarminio
,
J.
,
2018
, “
LiCoO2 Particle Size Distribution as a Function of the State of Health of Discarded Cell Phone Batteries
,”
Powder Technol.
,
326
, pp.
78
83
.
21.
Deng
,
Z.
,
Mo
,
Y.
, and
Ong
,
S. P.
,
2016
, “
Computational Studies of Solid-State Alkali Conduction in Rechargeable Alkali-Ion Batteries
,”
NPG Asia Mater.
,
8
(
3
), p.
e254
.
22.
Wu
,
L.
,
Lee
,
W. H.
, and
Zhang
,
J.
,
2014
, “
First Principles Study on the Electrochemical, Thermal and Mechanical Properties of LiCoO2 for Thin Film Rechargeable Battery
,”
Mater. Today
,
1
(
1
), pp.
82
93
.
23.
Zhang
,
X.
,
Shyy
,
W.
, and
Marie Sastry
,
A.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.
24.
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1992
, “
Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2
,”
J. Electrochem. Soc.
,
139
(
8
), pp.
2091
2097
.
25.
Wen
,
C. J.
,
Boukamp
,
B. A.
,
Huggins
,
R. A.
, and
Weppner
,
W.
,
1979
, “
Thermodynamic and Mass Transport Properties of ‘LiAl’
,”
J. Electrochem. Soc.
,
126
(
12
), pp.
2258
2266
.
26.
Van der Ven
,
A.
,
Aydinol
,
M.
,
Ceder
,
G.
,
Kresse
,
G.
, and
Hafner
,
J.
,
1998
, “
First-Principles Investigation of Phase Stability in LixCoO2
,”
Phys. Rev. B
,
58
(
6
), pp.
2975
2987
.
27.
Yamakawa
,
S.
,
Yamasaki
,
H.
,
Koyama
,
T.
, and
Asahi
,
R.
,
2013
, “
Numerical Study of Li Diffusion in Polycrystalline LiCoO2
,”
J. Power Sources
,
223
, pp.
199
205
.
28.
Ramadass
,
P.
,
Haran
,
B.
,
White
,
R.
, and
Popov
,
B. N.
,
2003
, “
Mathematical Modeling of the Capacity Fade of Li-Ion Cells
,”
J. Power Sources
,
123
(
2
), pp.
230
240
.
29.
Chen
,
B.
,
Zhou
,
J.
,
Zhu
,
J.
, and
Liu
,
Z.
,
2014
, “
Diffusion Induced Stress and the Distribution of Dislocations in a Nanostructured Thin Film Electrode During Lithiation
,”
RSC Adv.
,
4
(
109
), pp.
64216
64224
.
30.
Jang
,
Y.-I.
,
Neudecke
,
B. J.
, and
Dudney
,
N. J.
,
2001
, “
Lithium Diffusion in LixCoO2 (0.45 < x < 0.7) Intercalation Cathode
,”
Electrochem. Solid-State Lett.
,
4
(6), pp.
A94
A77
.
31.
Hao
,
F.
, and
Mukherjee
,
P. P.
,
2018
, “
Mesoscale Analysis of the Electrolyte-Electrode Interface in All-Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
A1857
A1864
.
32.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(7), p. 073517.
You do not currently have access to this content.