The prelithiation of hard carbon electrode using stable metal lithium powder to compensate the lithium loss during the first lithium insertion is studied in this work. The results show that when the pressure on lithium powder surface is 6 MPa, the Li2CO3 protective layer on the surface of stable metal lithium powder is completely squeezed, which is conducive due to the full contact between the metal lithium and the hard carbon. The prelithiation of hard carbon has little effect on the initial charge capacity and cycle life. Both the pre-lithium capacity and the utilization efficiency of lithium powder increase with the increasing of the lithium powder content, and when the amount of lithium powder is 3 g m−2, the utilization efficiency of lithium powder is 56%.

References

References
1.
Shareef
,
H.
,
Islam
,
M. M.
, and
Mohamed
,
A.
,
2016
, “
A Review of the Stage-of-the-Art Charging Technologies, Placement Methodologies, and Impacts of Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
403
420
.
2.
Yong
,
J. Y.
,
Ramachandaramurthy
,
V. K.
,
Tan
,
K. M.
, and
Mithulananthan
,
N.
,
2015
, “
A Review on the State-of-the-Art Technologies of Electric Vehicle, Its Impacts and Prospects
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
365
385
.
3.
Mahmoudzadeh Andwari
,
A.
,
Pesiridis
,
A.
,
Rajoo
,
S.
,
Martinez-Botas
,
R.
, and
Esfahanian
,
V.
,
2017
, “
A Review of Battery Electric Vehicle Technology and Readiness Levels
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
414
430
.
4.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
, and
Mohamed
,
A.
,
2017
, “
A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
834
854
.
5.
Xu
,
N.
,
Sun
,
X.
,
Zhang
,
X.
,
Wang
,
K.
, and
Ma
,
Y.
,
2015
, “
A Two-Step Method for Preparing Li4Ti5O12-Graphene as an Anode Material for Lithium-Ion Hybrid Capacitors
,”
RSC Adv.
,
5
(
114
), pp.
94361
94368
.
6.
Li
,
X.
,
Gu
,
M.
,
Hu
,
S.
,
Kennard
,
R.
,
Yan
,
P.
,
Chen
,
X.
,
Wang
,
C.
,
Sailor
,
M. J.
,
Zhang
,
J.-G.
, and
Liu
,
J.
,
2014
, “
Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-Ion Battery Anodes
,”
Nat. Commun.
,
5
(
5
), p.
4105
.
7.
An
,
S. J.
,
Li
,
J.
,
Daniel
,
C.
,
Mohanty
,
D.
,
Nagpure
,
S.
, and
Wood
,
D. L.
, III
,
2016
, “
The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling
,”
Carbon
,
105
, pp.
52
76
.
8.
Patil
,
A.
,
Patil
,
V.
,
Wook Shin
,
D.
,
Choi
,
J.-W.
,
Paik
,
D.-S.
, and
Yoon
,
S.-J.
,
2008
, “
Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries
,”
Mater. Res. Bull.
,
43
(
8–9
), pp.
1913
1942
.
9.
Yazami
,
R.
, and
Reynier
,
Y. F.
,
2002
, “
Mechanism of Self-Discharge in Graphite–Lithium Anode
,”
Electrochim. Acta
,
47
(
8
), pp.
1217
1223
.
10.
Yazami
,
R.
,
1999
, “
Surface Chemistry and Lithium Storage Capability of the Graphite–Lithium Electrode
,”
Electrochim. Acta
,
45
(
1–2
), pp.
87
97
.
11.
Su
,
X.
,
Lin
,
C.
,
Wang
,
X.
,
Maroni
,
V. A.
,
Ren
,
Y.
,
Johnson
,
C. S.
, and
Lu
,
W.
,
2016
, “
A New Strategy to Mitigate the Initial Capacity Loss of Lithium Ion Batteries
,”
J. Power Sources
,
324
, pp.
150
157
.
12.
Oh
,
M.
,
Na
,
S.
,
Woo
,
C.-S.
,
Jeong
,
J.-H.
,
Kim
,
S.-S.
,
Bachmatiuk
,
A.
,
Rümmeli
,
M. H.
,
Hyun
,
S.
, and
Lee
,
H.-J.
,
2015
, “
Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin–Film Anode and Its Effects on Cyclic Stability for Li–Ion Batteries
,”
Adv. Energy Mater.
,
5
(
22
), p.
1501136
.
13.
Beattie
,
S. D.
,
Loveridge
,
M. J.
,
Lain
,
M. J.
,
Ferrari
,
S.
,
Polzin
,
B. J.
,
Bhagat
,
R.
, and
Dashwood
,
R.
,
2016
, “
Understanding Capacity Fade in Silicon Based Electrodes for Lithium-Ion Batteries Using Three Electrode Cells and Upper Cut-Off Voltage Studies
,”
J. Power Sources
,
302
, pp.
426
430
.
14.
Sun
,
Y.
,
Lee
,
H.
,
Seh
,
Z. W.
,
Liu
,
N.
,
Sun
,
J.
,
Li
,
Y.
, and
Cui
,
Y.
,
2016
, “
High-Capacity Battery Cathode Prelithiation to Offset Initial Lithium Loss
,”
Nat. Energy
,
1
(
1
), p.
15008
.
15.
Liu
,
N.
,
Hu
,
L.
,
Mcdowell
,
M. T.
,
Jackson
,
A.
, and
Cui
,
Y.
,
2011
, “
Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
,”
Acs Nano
,
5
(
8
), pp.
6487
6493
.
16.
Xu
,
N.
,
Sun
,
X.
,
Zhao
,
F.
,
Jin
,
X.
,
Zhang
,
X.
,
Wang
,
K.
,
Huang
,
K.
, and
Ma
,
Y.
,
2017
, “
The Role of Pre-Lithiation in Activated Carbon/Li4Ti5O12 Asymmetric Capacitors
,”
Electrochim. Acta
,
236
, pp.
443
450
.
17.
Holtstiege
,
F.
,
Bärmann
,
P.
,
Nölle
,
R.
,
Winter
,
M.
, and
Placke
,
T.
,
2018
, “
Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges
,”
Batteries
,
4
(
1
), p.
4
.
18.
Li
,
Y.
, and
Fitch
,
B.
,
2011
, “
Effective Enhancement of Lithium-Ion Battery Performance Using SLMP
,”
Electrochem. Commun.
,
13
(
7
), pp.
664
667
.
You do not currently have access to this content.