In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.

References

References
1.
Marrasso
,
E.
,
Roselli
,
C.
,
Sasso
,
M.
,
Picallo-Perez
,
A.
, and
Sala Lizarrag
,
J. M.
,
2018
, “
Dynamic Simulation of a Microcogeneration System in a Spanish Cold Climate
,”
Energy Convers. Manage.
,
165
, pp.
206
218
.
2.
Lazzarin
,
R.
,
2012
, “
Dual Source Heat Pump Systems: Operation and Performance
,”
Energy Build.
,
52
, pp.
77
85
.
3.
Rokni
,
M.
,
2010
, “
Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle With a Rankine Cycle
,”
Energy Convers. Manage.
,
51
(12), pp. 2724–2732.
4.
Pierobon
,
L.
,
Rokni
,
M.
,
Larsen
,
U.
, and
Haglind
,
F.
,
2013
, “
Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant Combined With an Organic Rankine Cycle
,”
Renewable Energy
,
60
, pp.
226
234
.
5.
Rokni
,
M.
,
2014
, “
Thermodynamic and Thermoeconomic Analysis of a System With Biomass Gasification, Solid Oxide Fuel Cell (SOFC) and Stirling Engine
,”
Energy
,
76
, pp.
19
31
.
6.
Rokni
,
M.
,
2013
, “
Thermodynamic Analysis of SOFC (Solid Oxide Fuel Cell)—Stirling Hybrid Plants Using Alternative Fuels
,”
Energy
,
61
, pp.
87
97
.
7.
Hosseinpour
,
J.
,
Sadeghi
,
M.
,
Chitsaz
,
A.
,
Ranjbar
,
F.
, and
Rosen
,
M. A.
,
2017
, “
Exergy Assessment and Optimization of a Cogeneration System Based on a Solid Oxide Fuel Cell Integrated With a Stirling Engine
,”
Energy Convers. Manage.
,
143
, pp.
448
458
.
8.
Zhang
,
H.
,
Xu
,
H.
,
Chen
,
B.
,
Dong
,
F.
, and
Ni
,
M.
,
2017
, “
Two-Stage Thermoelectric Generators for Waste Heat Recovery From Solid Oxide Fuel Cells
,”
Energy
,
132
, pp.
280
288
.
9.
Mortazaei
,
M.
, and
Rahimi
,
M.
,
2016
, “
A Comparison Between Two Methods of Generating Power, Heat and Refrigeration Via Biomass Based Solid Oxide Fuel Cell: A Thermodynamic and Environmental Analysis
,”
Energy Convers. Manage.
,
126
, pp.
132
141
.
10.
Liso
,
V.
,
Zhao
,
Y.
,
Brandon
,
N.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2011
, “
Analysis of the Impact of Heat-to-Power Ratio for a SOFC-Based mCHP System for Residential Application Under Different Climate Regions in Europe
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13715
13726
.
11.
Bompard
,
E.
,
Napoli
,
R.
,
Wan
,
B.
, and
Orsello
,
G.
,
2008
, “
Economics Evaluation of a 5 kW SOFC Power System for Residential Use
,”
Int. J. Hydrogen Energy
,
33
(
12
), pp.
3243
3247
.
12.
Elmer
,
T.
,
Worall
,
M.
,
Wu
,
S.
, and
Riffat
,
S.
,
2016
, “
Assessment of a Novel Solid Oxide Fuel Cell Tri-Generation System for Building Applications
,”
Energy Convers. Manage.
,
124
, pp.
29
41
.
13.
Ho Lee
,
K.
, and
Strand
,
R. K.
,
2009
, “
SOFC Cogeneration System for Building Applications—Part 2: System Configuration and Operating Condition Design
,”
Renewable Energy
,
34
(
12
), pp.
2839
2846
.
14.
Sorace
,
M.
,
Gandiglio
,
M.
, and
Santarelli
,
M.
,
2017
, “
Modeling and Techno-Economic Analysis of the Integration of a FC-Based Micro-CHP System for Residential Application With a Heat Pump
,”
Energy
,
120
, pp.
262
275
.
15.
Al Moussawi
,
H.
,
Fardoun
,
F.
, and
Louahlia
,
H.
,
2017
, “
4-E Based Optimal Management of a SOFC-CCHP System Model for Residential Applications
,”
Energy Convers. Manage.
,
151
, pp.
607
629
.
16.
Fong
,
K. F.
, and
Lee
,
C. K.
,
2016
, “
System Analysis and Appraisal of SOFC-Primed Micro Cogeneration for Residential Application in Subtropical Region
,”
Energy Build.
,
128
, pp.
819
826
.
17.
Shimoda
,
Y.
,
Taniguchi-Matsuoka
,
A.
,
Inoue
,
T.
,
Otsuki
,
M.
, and
Yamaguchi
,
Y.
,
2017
, “
Residential Energy End-Use Model as Evaluation Tool for Residential Micro-Generation
,”
Appl. Therm. Eng.
,
114
, pp.
1433
1442
.
18.
Ramadhani
,
F.
,
Hussain
,
M. A.
,
Mokhlis
,
H.
, and
Hajimolana
,
S.
,
2017
, “
Optimization Strategies for Solid Oxide Fuel Cell (SOFC) Application: A Literature Survey
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
460
484
.
19.
Wakui
,
T.
,
Wada
,
N.
, and
Yokoyama
,
R.
,
2012
, “
Feasibility Study on Combined Use of Residential SOFC Cogeneration System and Plug-In Hybrid Electric Vehicle From Energy-Saving Viewpoint
,”
Energy Convers. Manage.
,
60
, pp.
170
179
.
20.
Vialetto
,
G.
,
Noro
,
M.
, and
Rokni
,
M.
,
2017
, “
Combined Micro-Cogeneration and Electric Vehicle System for Household Application: An Energy and Economic Analysis in a Northern European Climate
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10285
10297
.
21.
Vialetto
,
G.
,
Noro
,
M.
, and
Rokni
,
M.
,
2017
, “
Thermodynamic Investigation of a Shared Cogeneration System With Electrical Cars for Northern Europe Climate
,”
J. Sustainable Dev. Energy, Water Environ. Syst.
,
5
(
4
), pp.
590
607
.
22.
Frazzica
,
A.
,
Briguglio
,
N.
,
Sapienza
,
A.
,
Freni
,
A.
,
Brunaccini
,
G.
,
Antonucci
,
V.
, and
Ferraro
,
M.
,
2015
, “
Analysis of Different Heat Pumping Technologies Integrating Small Scale Solid Oxide Fuel Cell System for More Efficient Building Heating Systems
,”
Int. J. Hydrogen Energy
,
40
(
42
), pp.
14746
14756
.
23.
Klein, S. A.
,
2004
, “
TRNSYS: A Transient System Simulation Program
,” TRNSYS Manual, Version 16, University of Wisconsin, Madison, WI.
24.
Busato
,
F.
,
Lazzarin
,
R.
, and
Noro
,
M.
,
2013
, “
Two Years of Recorded Data for a Multisource Heat Pump System: A Performance Analysis
,”
Appl. Therm. Eng.
,
57
(
1–2
), pp.
39
47
.
25.
Busato
,
F.
,
Lazzarin
,
R.
, and
Noro
,
M.
,
2015
, “
Ground or Solar Source Heat Pump Systems for Space Heating: Which Is Better? Energetic Assessment Based on a Case History
,”
Energy Build.
,
102
, pp.
347
356
.
26.
Busato
,
F.
,
Lazzarin
,
R.
, and
Noro
,
M.
,
2011
, “
Ten Years History of a Real Gas Driven Heat Pump Plant: Energetic, Economic and Maintenance Issues
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1648
1654
.
27.
Busato
,
F.
,
Lazzarin
,
R.
, and
Noro
,
M.
,
2012
, “
Energy and Economic Analysis of Different Heat Pump Systems for Space Heating
,”
Int. J. Low Carbon Technol.
,
7
(
2
), pp.
104
112
.
28.
Vialetto
,
G.
, and
Rokni
,
M.
,
2015
, “
Innovative Household Systems Based on Solid Oxide Fuel Cells for a Northern European Climate
,”
Renewable Energy
,
78
, pp.
146
156
.
29.
Vialetto
,
G.
,
Noro
,
M.
, and
Rokni
,
M.
,
2015
, “
Innovative Household Systems Based on Solid Oxide Fuel Cells for the Mediterranean Climate
,”
Int. J. Hydrogen Energy
,
40
(
41
), pp.
14378
14391
.
30.
Kavvadias
,
K. C.
,
Tosios
,
A. P.
, and
Maroulis
,
Z. B.
,
2010
, “
Design of a Combined Heating, Cooling and Power System: Sizing, Operation Strategy Selection and Parametric Analysis
,”
Energy Convers. Manage.
,
51
(
4
), pp.
833
845
.
31.
Wang
,
K.
,
Li
,
N.
,
Peng
,
J.
,
Wang
,
X.
,
Wang
,
C.
, and
Wang
,
M.
,
2017
, “
A Highly Efficient Solution for Thermal Compensation of Ground-Coupled Heat Pump Systems and Waste Heat Recovery of Kitchen Exhaust Air
,”
Energy Build.
,
138
, pp.
499
513
.
32.
Oluleye
,
G.
,
Smith
,
R.
, and
Jobson
,
M.
,
2016
, “
Modeling and Screening Heat Pump Options for the Exploration of Low Grade Waste Heat in Process Sites
,”
Appl. Energy
,
169
, pp.
267
286
.
33.
Zink
,
F.
,
Lu
,
Y.
, and
Schaefer
,
L.
,
2007
, “
A Solid Oxide Fuel Cell System for Buildings
,”
Energy Convers. Manage.
,
48
(
3
), pp.
809
818
.
34.
Lazzarin
,
R.
, and
Noro
,
M.
,
2006
, “
District Heating and Gas Engine Heat Pump: Economic Analysis Based on a Case Study
,”
Appl. Therm. Eng.
,
26
(
2–3
), pp.
193
199
.
35.
Petersen
,
T. F.
,
Houbak
,
N.
, and
Elmegaard
,
B.
,
2006
, “
A Zero-Dimensional Model of a 2nd Generation Planar SOFC With Calibrated Parameters
,”
Int J Thermodyn.
,
9
(
4
), pp.
147
159
.
36.
Braun, R. J.
, 2010, “
Techno-Economic Optimal Design of Solid Oxide Fuel Cell System for Micro-Combined Heat and Power Application in U.S
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(3), p. 031018.
37.
Italian Standards
,
2010
, “
Renewable Energy and Other Generation Systems for Space Heating and Domestic Hot Water Production
,” Ente Nazionale Italiano di Unificazione, Milan, Italy, Standard No. UNI/TS 11300-4:2010.
38.
European Committee for Standardisation
,
2008
, “
Air Conditioners, Liquid Chilling Packages and Heat Pumps, With Electrically Driven Compressors, for Space Heating and Cooling—Testing and Rating at Part Load Conditions and Calculation of Seasonal Performance
,” European Committee for Standardisation, Brussels, Belgium, Standard No. EN 14825:2008.
39.
Viessmann S.r.l.
, 2016, “
Technical Datasheet From Viessmann—Vitocal 200-A
,” Viessmann, Balconi di Pescantina, Italy, accessed Feb. 2, 2018, http://downloads.viessmannitalia.it/documents/5820-437-052015.pdf
40.
Busato
,
F.
,
Lazzarin
,
R.
,
Minchio
,
F.
, and
Noro
,
M.
,
2012
,
Sorgenti Termiche Delle Pompe di Calore. Aspetti Tecnici, Economici e Normativi (Heat Sources of Heat Pumps. Technical, Economic and Standard Aspects)
,
Editoriale Delfino
,
Milano, Italy
(in Italian).
41.
Rokni
,
M.
,
2010
, “
Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle
,”
Energy
,
35
(
12
), pp.
4691
4699
.
42.
ASHRAE
,
2009
, “
Fundamentals
,”
ASHRAE Handbook—Chapter 1: Psychometrics
, ASHRAE, Atlanta, GA.
43.
Lazzarin
,
R.
,
2011
,
Pompe di Calore. Parte Teorica, Parte Applicativa (Heat Pumps. Theoretic Part, Application Part, in Italian)
,
SGE
,
Padova, Italy
.
44.
European Parliament, 2012, “
Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency
,” European Parliament, Brussels, Belgium, accessed Mar. 3, 2018, https://eur-lex.europa.eu/eli/dir/2012/27/oj
45.
European Parliament, 2004, “
Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on Promotion of Cogeneration Based on a Useful Heat Demand in the Internal Energy Market
,” European Parliament, Brussels, Belgium, accessed Mar. 3, 2018, https://eur-lex.europa.eu/eli/dir/2004/8/oj
46.
Ministero dello Sviluppo Economico
,
2015
,
Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici
(Italian Economic Development Ministry, 2015, Application of Energy Performance Calculus Methods and Definition of Regulations and Minimum Requirements for Buildings), Italian Economic Development Ministry, Rome, Italy (in Italian).
You do not currently have access to this content.