This paper presents the development of the subsystems for stationary biogas powered solid oxide fuel cell (SOFC)-based combined cooling, heat and power (CCHP). For certain applications, such as buildings, a heat-driven operation mode leads to low operating hours per year for conventional combined heat and power (CHP) systems due to the low heat demand during the summer season. The objectives of this study are the evaluation of an adsorber, a steam reformer, a SOFC, and an absorption chiller (AC). Biogas, however, contains impurities in the form of hydrogen sulfide (H2S), hydrogen chloride (HCl), and siloxanes in different concentrations, which have a negative effect on the performance and durability of the SOFC and, in the case of H2S, also on the catalyst of the steam reformer. This paper describes different experimental sections: (i) the biogas treatment with its main focus on H2S separation and steam reforming, (ii) the setup and start-up of a 10 cell SOFC stack, and (iii) test runs with an AC using a mixture of NH3 (ammonia)/H2O (water). The components required for the engineering process of the subsystem's structure are described in detail and possible options for system design are explained. The evaluation is the basis to reveal the improvement potentials, which have to be considered in future product developments. This paper aims at comparing experimental data of the test rigs to develop an understanding of the requirements for a stable and continuous operation of a SOFC-based CCHP operated by biogas.

References

References
1.
Wu
,
D. W.
, and
Wang
,
R. Z.
,
2006
, “
Combined Cooling, Heating and Power: A Review
,”
Prog. Energy Combust. Sci.
,
32
(
5–6
), pp.
459
495
.
2.
Van herle
,
J.
,
Membrez
,
Y.
, and
Bucheli
,
O.
,
2004
, “
Biogas as a Fuel Source for SOFC Co-Generators
,”
J. Power Sources.
,
127
(
1–2
), pp.
300
312
.
3.
Trendewicz
,
A. A.
, and
Braun
,
R. J.
,
2013
, “
Techno-Economic Analysis of Solid Oxide Fuel Cell-Based Combined Heat and Power Systems for Biogas Utilization at Wastewater Treatment Facilities
,”
J. Power Sources.
,
233
, pp.
380
393
.
4.
Lanzini
,
A.
,
Madi
,
H.
,
Chiodo
,
V.
,
Papurello
,
D.
,
Maisano
,
S.
,
Santarelli
,
M.
, and
Van herle
,
J.
,
2017
, “
Dealing With Fuel Contaminants in Biogas-Fed Solid Oxide Fuel Cell (SOFC) and Molten Carbonate Fuel Cell (MCFC) Plants: Degradation of Catalytic and Electro-Catalytic Active Surfaces and Related Gas Purification Methods
,”
Prog. Energy Combust. Sci.
,
61
, pp.
150
188
.
5.
Giglio
,
E.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2015
, “
Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation—Part I: Energy Performance
,”
J. Energy Storage.
,
1
, pp.
22
37
.
6.
Giglio
,
E.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2015
, “
Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation—Part II: Economic Analysis
,”
J. Energy Storage.
,
2
, pp.
64
79
.
7.
Madi
,
H.
,
Lanzini
,
A.
,
Papurello
,
D.
,
Diethelm
,
S.
,
Ludwig
,
C.
,
Santarelli
,
M.
, and
Van herle
,
J.
,
2016
, “
Solid Oxide Fuel Cell Anode Degradation by the Effect of Hydrogen Chloride in Stack and Single Cell Environments
,”
J. Power Sources.
,
326
, pp.
349
356
.
8.
Rechberger
,
J.
,
Reissig
,
M.
, and
Hauth
,
M.
,
2013
, “
AVL SOFC Systems on the Way of Industrialization
,”
ECS Trans.
,
57
(
1
), pp.
141
148
.
9.
Powell
,
M.
,
Meinhardt
,
K.
,
Sprenkle
,
V.
,
Chick
,
L.
, and
McVay
,
G.
,
2012
, “
Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation
,”
J. Power Sources.
,
205
, pp.
377
384
.
10.
Riegraf
,
M.
,
Schiller
,
G.
,
Costa
,
R.
,
Friedrich
,
K. A.
,
Latz
,
A.
, and
Yurkiv
,
V.
,
2014
, “
Elementary Kinetic Numerical Simulation of Ni/YSZ SOFC Anode Performance Considering Sulfur Poisoning
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
F65
F75
.
11.
Sasaki
,
K.
,
Haga
,
K.
,
Yoshizumi
,
T.
,
Minematsu
,
D.
,
Yuki
,
E.
,
Liu
,
R.
,
Uryu
,
C.
,
Oshima
,
T.
,
Ogura
,
T.
,
Shiratori
,
Y.
,
Ito
,
K.
,
Koyama
,
M.
, and
Yokomoto
,
K.
,
2011
, “
Chemical Durability of Solid Oxide Fuel Cells: Influence of Impurities on Long-Term Performance
,”
J. Power Sources.
,
196
(
22
), pp.
9130
9140
.
12.
Goodenough
,
J. B.
, and
Huang
,
Y.-H.
,
2007
, “
Alternative Anode Materials for Solid Oxide Fuel Cells
,”
J. Power Sources.
,
173
(
1
), pp.
1
10
.
13.
Subotic
,
V.
,
Schluckner
,
C.
,
Schroettner
,
H.
, and
Hochenauer
,
C.
,
2016
, “
Analysis of Possibilities for Carbon Removal From Porous Anode of Solid Oxide Fuel Cells After Different Failure Modes
,”
J. Power Sources.
,
302
, pp.
378
386
.
14.
Lee
,
W. Y.
,
Hanna
,
J.
, and
Ghoniem
,
A. F.
,
2012
, “
On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
F94
F105
.
15.
Kaparaju
,
P.
, and
Rintala
,
J.
,
2013
, “
Generation of Heat and Power From Biogas for Stationary Applications: Boilers, Gas Engines and Turbines, Combined Heat and Power (CHP) Plants and Fuel Cells
,”
Biogas Handbook
,
A.
Wellinger
,
J.
Murphy
, and
D.
Baxter
, eds.,
Elsevier
,
Cambridge, UK
, pp.
404
427
.
16.
Rasi
,
S.
,
Veijanen
,
A.
, and
Rintala
,
J.
,
2007
, “
Trace Compounds of Biogas From Different Biogas Production Plants
,”
Energy
,
32
(
8
), pp.
1375
1380
.
17.
Turco
,
M.
,
Ausiello
,
A.
, and
Micoli
,
L.
,
2016
, “
The Use of Biogas in MCFCs and SOFCs Technology: Adsorption Processes and Adsorbent Materials for Removal of Noxious Compounds
,”
Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology
,
Springer
,
Cham, Switzerland
, pp.
95
130
.
18.
Hagen
,
A.
,
Rasmussen
,
J. F. B.
, and
Thydén
,
K.
,
2011
, “
Durability of Solid Oxide Fuel Cells Using Sulfur Containing Fuels
,”
J. Power Sources.
,
196
(
17
), pp.
7271
7276
.
19.
Rostrup-Nielsen
,
J. R.
,
Hansen
,
J. B.
,
Helveg
,
S.
,
Christiansen
,
N.
, and
Jannasch
,
A.-K.
,
2006
, “
Sites for Catalysis and Electrochemistry in Solid Oxide Fuel Cell (SOFC) Anode
,”
Appl. Phys. A.
,
85
(
4
), pp.
427
430
.
20.
Bao
,
J.
,
Krishnan
,
G. N.
,
Jayaweera
,
P.
,
Perez-Mariano
,
J.
, and
Sanjurjo
,
A.
,
2009
, “
Effect of Various Coal Contaminants on the Performance of Solid Oxide Fuel Cells—Part I: Accelerated Testing
,”
J. Power Sources.
,
193
(
2
), pp.
607
616
.
21.
Turco
,
M.
,
Ausiello
,
A.
, and
Micoli
,
L.
,
2016
, “
The Effect of Biogas Impurities on SOFC
,”
Treatment Biogas Feeding High Temperature Fuel Cells
,
Springer
,
Cham, Switzerland
, pp.
137
149
.
22.
Shekhawat
,
D.
,
Spivey
,
J. J.
, and
Berry
,
D. A.
,
2011
,
Fuel Cells: Technologies for Fuel Processing
,
1st ed.
,
Elsevier Science
, Oxford, UK.
23.
Donau Carbon
,
2011
,
Desorex K43a Material Safety Data Sheet
,
Donau Carbon GmbH, Frankfurt am Main
,
Germany
.
24.
Clariant
,
2008
,
Clariant GS 6 Material Saftedy Data Sheet
,
Clariant International
,
Muttenz, Switzerland
.
25.
Herout
,
M.
,
Malathacek̃ák
,
J.
,
Kučera
,
L.
, and
Dlabaja
,
T.
,
2011
, “
Biogas Composition Depending on the Type of Plant Biomass Used
,”
Res. Agric. Eng.
,
57
(
4
), pp.
137
143
.
26.
Crittenden
,
B. D.
, and
Thomas
,
W. J.
,
1998
,
Adsorption Technology and Design
,
1st ed.
,
Butterworth-Heinemann
, Oxford, UK.
27.
Henning
,
K.
,
1991
, Aktivkohlen: Herstellungsverfahren und Produkteigenschaften [Vortrag] Seminar Wuppertal, 18. und 19. April 1991, Aktivkohlen in Technik und Umweltschutz der Technischen Akademie Wuppertal, CarboTech-Aktivkohlen GmbH, Essen, Germany.
28.
Reppich
,
M.
,
Datzmann
,
S.
,
Li
,
X.
,
Rosenbauer
,
S.
,
Schlecht
,
C.
, and
Tschepur
,
S.
,
2009
, “
Vergleich Verschiedener Aufbereitungsverfahren Von Biogas Zur Einspeisung in Das Erdgasnetz
,”
Chem. Ing. Tech.
,
81
(
3
), pp.
211
223
.
29.
Castrillon
,
M. C.
,
Moura
,
K. O.
,
Alves
,
C. A.
,
Bastos-Neto
,
M.
,
Azevedo
,
D. C. S.
,
Hofmann
,
J.
,
Möllmer
,
J.
,
Einicke
,
W.-D.
, and
Gläser
,
R.
,
2016
, “
CO2 and H2S Removal From CH4—Rich Streams by Adsorption on Activated Carbons Modified With K2CO3, NaOH, or Fe2O3
,”
Energy Fuels
,
30
(
11
), pp.
9596
9604
.
30.
Przepiorski
,
J.
, and
Oya
,
A.
,
1998
, “
K2CO3-Loaded Deodorizing Activated Carbon Fibre Against H2S Gas: Factors Influencing the Deodorizing Efficiency and the Regeneration Method
,”
J. Mater. Sci. Lett.
,
17
(
8
), pp.
679
682
.
31.
Husmann
,
M.
,
Hochenauer
,
C.
,
Meng
,
X.
,
de Jong
,
W.
, and
Kienberger
,
T.
,
2014
, “
Evaluation of Sorbents for High Temperature In Situ Desulfurization of Biomass-Derived Syngas
,”
Energy Fuels.
,
28
(
4
), pp.
2523
2534
.
32.
Elseviers
,
W. F.
, and
Verelst
,
H.
,
1999
, “
Transition Metal Oxides for Hot Gas Desulphurisation
,”
Fuel
,
78
(
5
), pp.
601
612
.
33.
Weinlaender
,
C.
,
Neubauer
,
R.
, and
Hochenauer
,
C.
,
2016
, “
Low-Temperature H2S Removal for Solid Oxide Fuel Cell Application With Metal Oxide Adsorbents
,”
Adsorpt. Sci. Technol.
,
35
(
1–2
), pp.
120
136
.
34.
Weinlaender
,
C.
,
Neubauer
,
R.
,
Hauth
,
M.
, and
Hochenauer
,
C.
,
2017
, “
Influence of Gas Composition and Steam on Removing H2S From Biogas Using Sorbents for SOFC Applications
,”
Chem. Ing. Tech.
,
89
(
9
), pp.
1247
1254
.
35.
Vögtlin Instruments GmbH
,
2018
,
Thermal Mass Flow Meters and Controllers for Gases
,
Vögtlin Instruments GmbH, Aesch
,
Switzerland
.
36.
LAUDA-Brinkmann
,
2017
,
LAUDA—Thermostats, Circulation Chillers
,
Water Baths
,
Delran, NJ
.
37.
ABB
,
2010
, “
ABB Advance Optima Module Limas 11 Service Manual
,” ABB,
Frankfurt am Main
,
Germany
.
38.
Novochinskii
,
I.
,
Song
,
C.
,
Ma
,
X.
,
Liu
,
X.
,
Shore
,
L.
,
Jordan Lampert
,
A.
, and
Farrauto
,
R. J.
,
2004
, “
Low-Temperature H2S Removal From Steam-Containing Gas Mixtures With ZnO for Fuel Cell Application—1: ZnO Particles and Extrudates
,”
Energy Fuels
,
18
(
2
), pp.
576
583
.
39.
Clariant
,
2012
, “
Material Safety Data Sheet Clariant Reformax 100
,” Clariant International, Muttenz, Switzerland.
40.
ABB,
2010
, “
Advance Optima Caldos 17 Service Manual
,” ABB, Frankfurt am Main, Germany.
41.
ABB,
2010
, “
Advance Optima Uras 14 Service Manual
,” ABB, Frankfurt am Main, Germany.
42.
Megel
,
S.
,
Kusnezoff
,
M.
,
Trofimenko
,
N.
,
Sauchuk
,
V.
,
Michaelis
,
A.
,
Venskutonis
,
A.
,
Rissbacher
,
K.
,
Kraussler
,
W.
,
Brandner
,
M.
,
Bienert
,
C.
, and
Sigl
,
L. S.
,
2011
, “
High Efficiency CFY-Stack for High Power Applications
,”
ECS Transactions
,
The Electrochemical Society
,
Pennington, NJ
, pp.
269
277
.
43.
Bošnjaković
,
F.
, and
Knoche
,
K. F.
,
1998
,
Technische Thermodynamik Teil I
, Steinkopff,
Heidelberg, Germany
.
44.
Herold
,
K. E.
,
Radermacher
,
R.
, and
Klein
,
S. A.
,
1996
,
Absorption Chillers and Heat Pumps
,
Taylor & Francis
, Boca Raton, FL.
45.
Turco
,
M.
,
Ausiello
,
A.
, and
Micoli
,
L.
, 2016,
Treatment of Biogas for Feeding High Temperature Fuel Cells: Removal of Harmful Compounds by Adsorption Processes
, Springer, Cham, Switzerland.
46.
Sattler
,
K.
, and
Feindt
,
H. J.
,
1995
,
Thermal Separation Processes: Principles and Design
,
Wiley-VCH Verlag GmbH
, Weinheim, Germany.
47.
Albert
,
J.
, and
Rieberer
,
R.
,
2017
, “
Experimentelle Und Simulationsgestützte Analyse einer Absorptionskältemaschine für KWKK-Anlagen
,” Proc. Deutsche Kälte-Klima-Tagung 2017, AA II.1.16, Bremen, Germany.
48.
Hauth
,
M.
,
Seidl
,
M.
,
Postl
,
A.
,
Sallai
,
C.
,
Soukup
,
N.
,
Albert
,
J.
,
Weinländer
,
C.
,
Rieberer
,
R.
, and
Hochenauer
,
C.
,
2017
, “
Development of a Highly Flexible SOFC CCHP System Towards Demand-Oriented Power Generation From Renewable Fuels
,”
ECS Trans.
,
78
(
1
), pp.
155
170
.
49.
Hauth
,
M.
,
Seidl
,
M.
,
Sallai
,
C.
,
Soukup
,
N.
,
Postl
,
A.
,
Rieberer
,
R.
, and
Albert
,
J.
,
2018
, “
Development of a SOFC CCHP System Towards Flexible Production of Electricity, Heat and Cooling Power for Transport Applications
,” Transport Research Arena Conference (TRA 2018), Vienna, Austria, Apr. 16–19.
You do not currently have access to this content.