Redox flow batteries have shown great potential for a wide range of applications in future energy systems. However, the lack of a deep understanding of the key drivers of the techno-economic performance of different flow battery technologies—and how these can be improved—is a major barrier to wider adoption of these battery technologies. This study analyzes these drivers and provides an extensive comparison of four flow battery technologies, including the all-vanadium redox (VRB), iron–chromium, zinc–bromine, and polysulfide–bromine flow batteries, by examining their current and projected techno-economic performances. We address the potential for performance improvements and resulting cost reduction by developing a component-based learning curve model. The model considers the near-term learning rates for various subcomponents of each of the four battery technologies as well as their technological improvements. The results show that (i) both technological improvements in the performance parameters as well as mass production effects could drive significant cost reductions for flow battery systems; (ii) flow battery systems could be cost-effective in a variety of energy system applications in the near future; and (iii) from a techno-economic perspective, VRB systems are more suitable for the applications that require low energy and high power capacities.

References

References
1.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J. M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
2.
Chen
,
H.
,
Cong
,
T. N.
,
Yang
,
W.
,
Tan
,
C.
, and
Li
,
Y.
,
2009
, “
Progress in Electrical Energy Storage System: A Critical Review
,”
Prog. Natural Sci.: Mater. Int.
,
19
(
3
), pp.
291
312
.
3.
NERC
,
2013
, “
2013 Long-Term Reliability Assessment
,” North American Electric Reliability Corporation, Atlanta, GA, accessed July 30, 2018, https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2013_LTRA_FINAL.pdf
4.
Zheng
,
M.
,
Meinrenken
,
C. J.
, and
Lackner
,
K. S.
,
2014
, “
Agent-Based Model for Electricity Consumption and Storage to Evaluate Economic Viability of Tariff Arbitrage for Residential Sector Demand Response
,”
Appl. Energy
,
126
(
C
), pp.
297
306
.
5.
Newcomer
,
A.
,
Blumsack
,
A. B.
,
Apt
,
J.
,
Lave
,
L. B.
, and
Morgan
,
M. J.
,
2008
, “
Short Run Effects of a Price on Carbon Dioxide Emissions From U.S. electric Generators
,”
Environ. Sci. Technol.
,
42
(
9
), pp.
3139
3144
.
6.
Zheng
,
M.
,
2015
, “
Smart Households: Economics and Emission Impacts of Distributed Energy Storage for Residential Sector Demand Response
,”
Ph.D. dissertation
, Columbia University, New York.https://academiccommons.columbia.edu/catalog/ac:189801
7.
Valentine
,
S. V.
,
2011
, “
Emerging Symbiosis: Renewable Energy and Energy Security
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4572
4578
.
8.
Qiu
,
Y.
, and
Anadon
,
L. D.
,
2012
, “
The Price of Wind Power in China During Its Expansion: Technology Adoption, Learning-by-Doing, Economies of Scale, and Manufacturing Localization
,”
Energy Econ.
,
34
(
3
), pp.
772
785
.
9.
Chakrabarti
,
M. H.
,
Roberts
,
E. P. L.
,
Bae
,
C.
, and
Saleem
,
M.
,
2011
, “
Ruthenium Based Redox Flow Battery for Solar Energy Storage
,”
Energy Convers. Manage.
,
52
(
7
), pp.
2501
2508
.
10.
Turker
,
B.
,
Klein
,
S. A.
,
Komsiyska
,
L.
,
Trujillo
,
J. J.
, and
Bremen
,
L. V.
,
2013
, “
Utilizing a Vanadium Redox Flow Battery to Avoid Wind Power Deviation Penalties in an Electricity Market
,”
Energy Convers. Manage.
,
76
(
76
), pp.
1150
1157
.
11.
Rastler
,
D. D.
,
2010
, “
Electricity Energy Storage Technology Options: A White Paper Primer on Applications, Costs and Benefits
,” Electric Power Research Institute, Palo Alto, CA, Technical Update 1020676, accessed July 30, 2018, http://large.stanford.edu/courses/2012/ph240/doshay1/docs/EPRI.pdf
12.
Hosseina
,
M.
, and
Bathaee
,
S. M. T.
,
2016
, “
Optimal Scheduling for Distribution Network With Redox Flow Battery Storage
,”
Energy Convers. Manage.
,
121
, pp.
145
151
.
13.
Mokrian
,
P.
,
2006
, “
A Stochastic Programming Framework for the Valuation of Electricity Storage
,”
26th USAEE/IAEE North American Conference
, Ann Arbor, MI, Sept. 24–27, pp.
24
27
.https://pdfs.semanticscholar.org/4cc3/9daee258877cbff93156781b660043a49b79.pdf
14.
Skyllas-Kazacos
,
M.
,
Chakrabarti
,
M. H.
,
Hajimolana
,
S. A.
,
Mjalli
,
F. S.
, and
Saleem
,
M.
,
2011
, “
Progress in Flow Battery Research and Development
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
R55
R79
.
15.
Wang
,
W.
,
Luo
,
Q.
,
Li
,
B.
,
Wei
,
X.
, and
Li
,
L.
,
2013
, “
Recent Progress in Redox Flow Battery Research and Development
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
970
986
.
16.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
17.
Minke
,
C.
,
Hickmann
,
T.
,
Dos Santos
,
A. R.
,
Kunz
,
U.
, and
Turek
,
T.
,
2016
, “
Cost and Performance Prospects for Composite Bipolar Plates in Fuel Cells and Redox Flow Batteries
,”
J. Power Sources
,
305
(
C
), pp.
182
190
.
18.
Minke
,
C.
, and
Turek
,
T.
,
2015
, “
Economics of Vanadium Redox Flow Battery Membranes
,”
J. Power Sources
,
286
, pp.
247
257
.
19.
Noack
,
D. I. J.
,
Roznyatovskaya
,
N.
,
Herr
,
T.
, and
Fischer
,
P.
,
2015
, “
Die Chemie Der Redox-Flow-Batterien
,”
Angew. Chem.
,
127
(
34
), pp.
9912
9947
.
20.
Leung
,
P.
,
Li
,
X.
,
León
,
C. P. D.
,
Berlouis
,
L.
, and
Low
,
C. T. J.
,
2012
, “
Progress in Redox Flow Batteries, Remaining Challenges and Their Applications in Energy Storage
,”
RSC Adv.
,
2
(
27
), pp.
10125
10156
.
21.
Alotto
,
P.
,
Guarnieri
,
M.
, and
Moro
,
F.
,
2014
, “
Redox Flow Batteries for the Storage of Renewable Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
29
(
7
), pp.
325
335
.
22.
Chakrabarti
,
M. H.
,
Hajimolana
,
S. A.
,
Mjalli
,
F. S.
,
Saleem
,
M.
, and
Mustafa
,
I.
,
2013
, “
Redox Flow Battery for Energy Storage
,”
Arabian J. Sci. Eng.
,
38
(
4
), pp.
723
739
.
23.
Androsov
,
A.
,
Amarnath
,
A.
,
Scott
,
M.
, and
Hu
,
A.
,
2014
, “
Bromine-Polysulfide Redox-Flow Battery Design: Cost Analysis
,”
University of Tennessee Honors Thesis Projects
, University of Tennessee, Knoxville, TN.http://trace.tennessee.edu/utk_chanhonoproj/1699/
24.
Spellman
,
K.
,
Stiles
,
K.
, and
Little
,
I.
, “
Economic Report on Vanadium Redox Flow Battery With Optimization of Flow Rate
,”
University of Tennessee Honors Thesis Projects
, University of Tennessee, Knoxville, TN.http://trace.tennessee.edu/utk_chanhonoproj/1593/
25.
Weber, A. Z.
,
Mench, M. M.
,
Meyers, J. P.
,
Ross, P. N.
,
Gostick, J. T.
, and
Liu, Q.
, 2011, “
Redox Flow Batteries: A Review
,”
J. Appl. Electrochem.
,
41
(10), pp. 1137–1164.
26.
Roberts
,
E. P. L.
, and
Scamman
,
D. P.
, “
Techno-Economic Modelling of a Utility-Scale Redox Flow Battery System
,” Electric Energy Storage Applications and Technologies Conference 2011, San Diego, CA, accessed July 30, 2018, https://www.sandia.gov/ess-ssl/EESAT/2011_papers/Monday/09_Roberts_Ed.pdf
27.
Zhang
,
M.
,
Moore
,
M.
,
Watson
,
J. S.
,
Zawodzinski
,
T. A.
, and
Counce
,
R. M.
,
2012
, “
Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1183
A1188
.
28.
Moore
,
M.
,
Counce, R. M.
,
Watson, J. S.
,
Thomas, A. Z.
, and
Sun, C. N.
,
2016
, “
An Analysis of the Contributions of Current Density and Voltage Efficiency to the Capital Costs of an All Vanadium Redox-Flow Battery
,”
J. Chem. Eng. Process Technol.
,
7
(
2
), p. 288.https://www.omicsonline.org/open-access/an-analysis-of-the-contributions-of-current-density-and-voltage-efficiencyto-the-capital-costs-of-an-all-vanadium-redoxflow-batter-2157-7048-1000288.php?aid=71807
29.
Zeng, Y. K.
,
Zhao, T. S.
,
An, L.
,
Zhou, X. L.
, and
Wei, L.
, 2015, “
A Comparative Study of All-Vanadium and Iron-Chromium Redox Flow Batteries for Large-Scale Energy Storage
,”
J. Power Sources
,
300
, pp. 438–443.
30.
Tang
,
A.
,
Bao
,
J.
, and
Skyllas-Kazacos
,
M.
,
2014
, “
Studies on Pressure Losses and Flow Rate Optimization in Vanadium Redox Flow Battery
,”
J. Power Sources
,
248
, pp.
154
162
.
31.
Yao, C.
,
Zhang, H. M.
,
Liu, T.
,
Li, X. F.
, and
Liu, Z. H.
, 2012, “
Carbon Paper Coated With Supported Tungsten Trioxide as Novel Electrode for All-Vanadium Flow Battery
,”
J. Power Sources
,
218
, pp. 455–461.
32.
Gong
,
K.
,
Fang
,
Q.
,
Gu
,
S.
,
Li
,
S. E. Y.
, and
Yan
,
Y.
,
2015
, “
Nonaqueous Redox-Flow Batteries: Organic Solvents, Supporting Electrolytes, and Redox Pairs
,”
Energy Environ. Sci.
,
8
(
12
), pp.
3515
3530
.
33.
Parasuraman
,
A.
,
Lim
,
T. M.
,
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
, 2013, “
Review of Material Research and Development for Vanadium Redox Flow Battery Applications
,”
Electrochimica Acta
,
101
, pp. 27–40.
34.
Allen
,
D. L.
,
Byrne
,
K. J.
,
Jones
,
A. M.
, and
Southerland
,
A.
,
2014
, “
Study Level Design and Economic Analysis of a 7 MW Bromine-Polysulfide Redox Flow Battery
,”
University of Tennessee Honors Thesis Projects
, University of Tennessee, Knoxville, TN.http://trace.tennessee.edu/utk_chanhonoproj/1788/
35.
Shibata
,
T.
,
Kumamoto
,
T.
,
Nagaoka
,
Y.
,
Kawase
,
K.
, and
Yano
,
K.
, 2013, “
Redox Flow Batteries for the Stable Supply of Renewable Energy
,”
SEI Tech. Rev.
,
76
, pp. 14–22.
36.
Kear
,
G.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
, 2012, “
Development of the All-Vanadium Redox Flow Battery for Energy Storage: A Review of Technological, Financial and Policy Aspects
,”
Int. J. Energy Res.
,
36
(11), pp. 1105–1120.
37.
León
,
C. P. D.
,
Frías-Ferrer
,
A.
,
González-García
,
J.
,
Szánto
,
D. A.
, and
Walsh
,
F. C.
,
2006
, “
Redox Flow Cells for Energy Conversion
,”
J. Power Sources
,
160
(
1
), pp.
716
732
.
38.
Wang
,
Y.
, and
Cho
,
S. C.
,
2014
, “
Analysis and Three-Dimensional Modeling of Vanadium Flow Batteries
,”
J. Electrochem. Soc.
,
161
(
9
), pp.
1200
1212
.
39.
Gandomi
,
Y. A.
,
Aaron
,
D. S.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2016
, “
In Situ Potential Distribution Measurement and Validated Model for All-Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
5188
5201
.
40.
Wright
,
T. P.
,
1936
, “
Factors Affecting the Cost of Airplanes
,”
J. Aeronaut. Sci.
,
3
(
4
), pp.
122
128
.
41.
Yelle
,
L. E.
,
1979
, “
The Learning Curve: Historical Review and Comprehensive Survey
,”
Decis. Sci.
,
10
(
2
), pp.
302
328
.
42.
Anzanello
,
M. J.
, and
Fogliatto
,
F. S.
,
2011
, “
Learning Curve Models and Applications: Literature Review and Research Directions
,”
Int. J. Ind. Ergonom.
,
41
(
5
), pp.
573
583
.
43.
Chakrabarti
,
M. H.
,
Dryfe
,
R. A. W.
, and
Roberts
,
E. P. L.
,
2007
, “
Evaluation of Electrolytes for Redox Flow Battery Applications
,”
Electrochim. Acta
,
52
(
5
), pp.
2189
2195
.
44.
Feng
,
X.
,
Zhang
,
H.
, and
Ma
,
X.
,
2011
, “
Shunt Current Loss of the Vanadium Redox Flow Battery
,”
J. Power Sources
,
196
(
24
), pp.
10753
10757
.
45.
Shah
,
A. A.
,
Al-Fetlawi
,
H.
, and
Walsh
,
F. C.
,
2010
, “
Dynamic Modelling of Hydrogen Evolution Effects in the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
3
), pp.
1125
1139
.
46.
Shin
,
S.
,
Yun
,
S.
, and
Moon
,
S.
,
2013
, “
A Review of Current Developments in Non-Aqueous Redox Flow Batteries: Characterization of Their Membranes for Design Perspective
,”
RSC Adv.
,
3
(
24
), pp.
9095
9116
.
47.
Darling
,
R. M.
,
Gallagher
,
K. J.
,
Kowalski
,
J. A.
,
Ha
,
S.
, and
Brushett
,
F. R.
,
2014
, “
Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries
,”
Energy Environ. Sci.
,
7
(
11
), pp.
3459
3477
.
48.
Zeng
,
Y. K.
,
Zhou, X. L.
,
Zeng, L.
,
Yan, X. H.
, and
Zhao, T. S.
,
2016
, “
Performance Enhancement of Iron-Chromium Redox Flow Batteries by Employing Interdigitated Flow Fields
,”
J. Power Sources
,
327
, pp.
258
264
.
49.
Zhou
,
H.
,
Zhou
,
X. L.
,
Zeng
,
L.
,
Yan
,
X. H.
, and
Zhao
,
T. S.
,
2006
, “
Novel Cobalt Coated Carbon Felt as High Performance Negative Electrode in Sodium Polysulfide/Bromine Redox Flow Battery
,”
Electrochemistry
,
74
(
4
), pp.
296
298
.
50.
Viswanathan
,
V.
,
Crawford
,
A.
,
Stephenson
,
D.
, and
Kim
,
S.
,
2014
, “
Cost and Performance Model for Redox Flow Batteries
,”
J. Power Sources
,
247
(
3
), pp.
1040
1051
.
51.
SMA Solar Technology AG
,
2015
, “
Sunny Mini Central 6000TL/7000TL/8000TL
,” SMA Solar Technology AG, Hesse, Germany, accessed July 30, 2018, http://sol-distribution.com.au/SMA-Inverters/Installation-Guide-SMC-6000TL-7000TL-8000TL.pdf
52.
Crawford
,
A.
,
Viswanathan
,
V.
,
Stephenson
,
D.
,
Wang
,
W.
, and
Thomsen
,
E.
,
2015
, “
Comparative Analysis for Various Redox Flow Batteries Chemistries Using a Cost Performance Model
,”
J. Power Sources
,
293
, pp.
388
399
.
53.
Zhou
,
X. L.
,
Zeng
,
Y. K.
,
Zhu
,
X. B.
,
Wei
,
L.
, and
Zhao
,
T. S.
,
2016
, “
A High-Performance Dual-Scale Porous Electrode for Vanadium Redox Flow Batteries
,”
J. Power Sources
,
325
, pp.
329
336
.
54.
Clark
,
N. H.
, and
Eidler
,
P.
,
1999
, “
Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report
,” Office of Scientific & Technical Information Technical Reports, 2, pp.
51
62
.
55.
Ge
,
S. H.
,
Yi
,
B. L.
, and
Zhang
,
H. M.
,
2004
, “
Study of a High Power Density Sodium Polysulfide/Bromine Energy Storage Cell
,”
J. Appl. Electrochem.
,
34
(
2
), pp.
181
185
.
56.
Hagedorn
,
N. H.
,
1984
, “
NASA Redox Storage System Development Project
,” National Aeronautics and Space Administration, Washington, DC, NASA Technical Report No.
NASA-TM-82665
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830006412.pdf
57.
Lim
,
J. W.
, and
Dai
,
G. L.
,
2015
, “
Carbon Fiber/Polyethylene Bipolar Plate-Carbon Felt Electrode Assembly for Vanadium Redox Flow Batteries (VRFB)
,”
Compos. Struct.
,
134
, pp.
483
492
.
58.
Zeng
,
Y. K.
,
Zhou
,
X. L.
,
An
,
L.
,
Wei
,
L.
, and
Zhao
,
T. S.
,
2016
, “
A High-Performance Flow-Field Structured Iron-Chromium Redox Flow Battery
,”
J. Power Sources
,
324
, pp.
738
744
.
59.
Wang
,
N.
,
Yu
,
J.
,
Zhou
,
Z.
,
Fang
,
D.
, and
Liu
,
S.
,
2013
, “
SPPEK/TPA Composite Membrane as a Separator of Vanadium Redox Flow Battery
,”
J. Membr. Sci.
,
437
(
12
), pp.
114
121
.
60.
Yang
,
H. S.
,
Park
,
J. H.
,
Ra
,
H. W.
,
Jin
,
C. S.
, and
Yang
,
J. H.
,
2016
, “
Critical Rate of Electrolyte Circulation for Preventing Zinc Dendrite Formation in a Zinc–Bromine Redox Flow Battery
,”
J. Power Sources
,
325
, pp.
446
452
.
61.
Ferioli
,
F.
,
Schoots
,
K.
, and
Zwaan
,
B. C. C. V.
,
2009
, “
Use and Limitations of Learning Curves for Energy Technology Policy: A Component-Learning Hypothesis
,”
Energy Policy
,
37
(
7
), pp.
2525
2535
.
62.
Dutton
,
J. M.
, and
Thomas
,
A.
,
1984
, “
Treating Progress Functions as a Managerial Opportunity
,”
Acad. Manage. Rev.
,
9
(
2
), pp.
235
247
.
63.
Schoots
,
K.
,
Kramer
,
G. J.
, and
Zwaan
,
B. C. C. V.
,
2010
, “
Technology Learning for Fuel Cells: An Assessment of past and Potential Cost Reductions
,”
Energy Policy
,
38
(
6
), pp.
2887
2897
.
64.
Wang
,
X. L.
,
Zhang
,
Y.
,
Ying
,
L. I.
, and
Zhang
,
H.
,
2015
, “
Vanadium Flow Battery Technology and Its Industrial Status
,”
Energy Storage Sci. Technol.
,
4
(
5
), pp.
458
466
.
65.
Jacques
,
C.
,
2014
, “
Lower-Cost Flow Batteries to Create $190 Million Energy Storage Market in 2020
,” Lux Research, Boston, MA, accessed July 30, 2018, http://www.luxresearchinc.com/news-and-events/press-releases/read/lower-cost-flow-batteries-create190-million-energy-storage
66.
Wang
,
S. Q.
,
2014
, “
Application and Market Research of Proton Exchange Membranes
,”
Inf. Recording Mater.
,
15
(
1
), pp.
45
51
(In Chinese).
67.
Hagedorn
,
N. H.
,
1983
, “
NASA Redox Project Status Summary
,” National Aeronautics and Space Administration Report, Washington, DC, NASA Technical Report No.
NASA-TM-83401
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830021539.pdf
68.
Lopez-Atalaya
,
M.
,
Codina
,
G.
,
Perez
,
J. R.
,
Vazquez
,
J. L.
, and
Aldaz
,
A.
,
1992
, “
Optimization Studies on a Fe/Cr Redox Flow Battery
,”
J. Power Sources
,
39
(
2
), pp.
147
154
.
69.
Shibata
,
A.
,
Kanji
,
S.
, and
Nakajima
,
M.
,
1994
, “
Development of Vanadium Redox Flow Battery for Photovoltaic Generation System
,”
IEEE
First World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, Dec. 5–9, pp.
950
953
.
70.
Mohammadi
,
T.
, and
Skyllas-Kazacos
,
M.
,
1995
, “
Characterisation of Novel Composite Membrane for Redox Flow Battery Applications
,”
J. Membr. Sci.
,
98
(
1–2
), pp.
77
87
.
71.
Zhou
,
X. L.
,
Zhao
,
T. S.
,
Zeng
,
Y. K.
,
An
,
L.
, and
Wei
,
L.
,
2016
, “
A Highly Permeable and Enhanced Surface Area Carbon-Cloth Electrode for Vanadium Redox Flow Batteries
,”
J. Power Sources
,
329
, pp.
247
254
.
72.
Wu
,
L.
,
Shen
,
Y.
,
Yu
,
L.
,
Xi
,
J.
, and
Qiu
,
X.
,
2016
, “
Boosting Vanadium Flow Battery Performance by Nitrogen-Doped Carbon Nanospheres Electrocatalyst
,”
Nano Energy
,
28
, pp.
19
28
.
73.
Zhang
,
L.
,
Zhang
,
H.
,
Lai
,
Q.
,
Li
,
X.
, and
Cheng
,
Y.
,
2013
, “
Development of Carbon Coated Membrane for Zinc/Bromine Flow Battery With High Power Density
,”
J. Power Sources
,
227
, pp.
41
47
.
74.
Yang
,
J. H.
,
Yang
,
H. S.
,
Ra
,
H. W.
,
Shim
,
J.
, and
Jeon
,
J. D.
,
2015
, “
Effect of a Surface Active Agent on Performance of Zinc/Bromine Redox Flow Batteries: Improvement in Current Efficiency and System Stability
,”
J. Power Sources
,
275
, pp.
294
297
.
75.
Nice
,
A. W.
,
1981
, “
NASA Redox System Development Project Status
,” National Aeronautics and Space Administration, Washington, DC, NASA Technical Report No.
NASA-TM-82665
.https://ntrs.nasa.gov/search.jsp?R=19820017761
76.
Gahn
,
R. F.
,
Charleston
,
J.
,
Ling
,
J. S.
, and
Reid
,
M. A.
,
1981
, “
Performance of Advanced Chromium Electrodes for the NASA Redox Energy Storage System
,”
Natl. Aeronaut. Space Admin. Rep.
,
127
(
8
), p.
C341
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19820004701.pdf
77.
Reed
,
D.
,
Thomsen
,
E.
,
Li
,
B.
,
Wang
,
W.
, and
Nie
,
Z.
,
2016
, “
Performance of a Low Cost Interdigitated Flow Design on a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery
,”
J. Power Sources
,
306
, pp.
24
31
.
78.
Li
,
X.
,
Zhang
,
H.
,
Mai
,
Z.
,
Zhang
,
H.
, and
Vankelecom
,
I.
,
2011
, “
Ion Exchange Membranes for Vanadium Redox Flow Battery (VRB) Applications
,”
Energy Environ. Sci.
,
4
(
4
), pp.
1147
1160
.
79.
Park
,
M.
,
Jung
,
Y. J.
,
Kim
,
J.
,
Hi
,
L.
, and
Cho
,
J.
,
2013
, “
Synergistic Effect of Carbon Nanofiber/Nanotube Composite Catalyst on Carbon Felt Electrode for High-Performance All-Vanadium Redox Flow Battery
,”
Nano Lett.
,
13
(
10
), pp.
4833
4839
.
80.
Lau
,
W. J.
,
Ismail
,
A. F.
,
Misdan
,
N.
, and
Kassim
,
M. A.
,
2012
, “
A Recent Progress in Thin Film Composite Membrane: A Review
,”
Desalination
,
287
, pp.
190
199
.
81.
Taherian
,
R.
,
2014
, “
A Review of Composite and Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell: Materials, Fabrication, and Material Selection
,”
J. Power Sources
,
265
, pp.
370
390
.
You do not currently have access to this content.