The effect of the charge/discharge profile on battery durability is a critical factor for the application of batteries and for the design of appropriate battery testing protocols. In this work, commercial high-power prismatic lithium ion cells for hybrid electric vehicles (HEVs) were cycled using a pulse-heavy profile and a simple square-wave profile to investigate the effect of cycle profile on battery durability. The pulse-heavy profile was designed to simulate on-road conditions for a typical HEV, while the simplified square-wave profile was designed to have the same total charge throughput, but with lower peak currents. The 5 Ah batteries were cycled for 100 kAh with periodic performance tests to monitor the state of the batteries. Results indicate that, for the batteries tested, the capacity fade for the two profiles was very similar and was 11±0.5% compared to beginning of life (BOL). The change in internal resistance of the batteries during testing was also monitored and found to increase 21% and 12% compared to BOL for the pulse-heavy and square-wave profiles, respectively. The results suggest that simplified testing protocols using square-wave cycling may provide adequate insight into capacity fade behavior for more complex hybrid vehicle drive cycles.

References

References
1.
Desilvestro
,
J.
, and
Haas
,
O.
,
1976
, “
Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review
,”
J. Electrochem. Soc.
,
123
, pp.
333C
346C
.http://jes.ecsdl.org/content/137/1/5C.short
2.
Liebreich
,
M.
,
2016
, “
Bloomberg New Energy Finance Report
,” Bloomberg New Energy Finance, New York, Report No. NEO2016.
3.
Ford,
2015
, “
Ford Investing 4.5 Billion USD in Electrified Vehicle Solutions Reimagining How to Create Future Vehicle User Experiences
,” Ford Mot. Co. Media Center, Dearborn, MI, accessed July, 2016, https://media.ford.com/content/fordmedia/fna/us/en/news/2015/12/10/ford-investing-4-5-billion-in-electrified-vehicle-solutions.html
4.
Christophersen, J. P.
,
2003
, “
FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles
,” Idaho National Laboratory, Idaho falls, ID, Report No.
DOE/ID-11069
.https://avt.inl.gov/sites/default/files/pdf/battery/freedomcar_manual_04_15_03.pdf
5.
Arora
,
P.
,
1998
, “
Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
145
(
10
), p.
3647
.
6.
Ramadass
,
P.
,
Haran
,
B.
,
Gomadam
,
P. M.
,
White
,
R.
, and
Popov
,
B. N.
,
2004
, “
Development of First Principles Capacity Fade Model for Li-Ion Cells
,”
J. Electrochem. Soc.
,
151
(
2
), p.
A196
.
7.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K.-C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.
8.
Pinson
,
M. B.
, and
Bazant
,
M. Z.
,
2012
, “
Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A243
A250
.
9.
Bodenes
,
L.
,
Naturel
,
R.
,
Martinez
,
H.
,
Dedryvère
,
R.
,
Menetrier
,
M.
,
Croguennec
,
L.
,
Pérès
,
J. P.
,
Tessier
,
C.
, and
Fischer
,
F.
,
2013
, “
Lithium Secondary Batteries Working at Very High Temperature: Capacity Fade and Understanding of Aging Mechanisms
,”
J. Power Sources
,
236
, pp.
265
275
.
10.
Waag
,
W.
,
Käbitz
,
S.
, and
Sauer
,
D. U.
,
2013
, “
Experimental Investigation of the Lithium-Ion Battery Impedance Characteristic at Various Conditions and Aging States and Its Influence on the Application
,”
Appl. Energy.
,
102
, pp.
885
897
.
11.
Nelson
,
K. J.
,
d′Eon
,
G. L.
,
Wright
,
A. T. B.
,
Ma
,
L.
,
Xia
,
J.
, and
Dahn
,
J. R.
,
2015
, “
Studies of the Effect of High Voltage on the Impedance and Cycling Performance of Li[Ni0.4Mn0.4Co0.2]O2/Graphite Lithium-Ion Pouch Cells
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
A1046
A1054
.
12.
Amine
,
K.
,
Chen
,
C. H.
,
Liu
,
J.
,
Hammond
,
M.
,
Jansen
,
A.
,
Dees
,
D.
,
Bloom
,
I.
,
Vissers
,
D.
, and
Henriksen
,
G.
,
2001
, “
Factors Responsible for Impedance Rise in High Power Lithium Ion Batteries
,”
J. Power Sources
,
97–98
, pp.
684
687
.
13.
Coupar
,
T.
,
2015
, personal communication.
14.
Ning
,
G.
, and
Popov
,
B. N.
,
2004
, “
Cycle Life Modeling of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
151
(
10
), p.
A1584
.
15.
Dubarry
,
M.
,
Svoboda
,
V.
,
Hwu
,
R.
, and
Yann Liaw
,
B.
,
2006
, “
Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries
,”
Electrochem. Solid-State Lett.
,
9
(
10
), pp.
A454
A457
.
16.
Belt
,
J.
,
Utgikar
,
V.
, and
Bloom
,
I.
,
2011
, “
Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered-Oxide Cathodes
,”
J. Power Sources
,
196
(
23
), pp.
10213
10221
.
17.
Guena
,
T.
, and
Leblanc
,
P.
,
2006
, “
How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries
,”
28th International Telecommunications Energy Conference
(
INTELEC 06
), Providence, RI, Sept. 10–14, pp.
1
8
.
18.
Marcicki
,
J.
,
Bartlett
,
A.
,
Canova
,
M.
,
Conlisk
,
A. T.
,
Rizzoni
,
G.
,
Guezennec
,
Y.
,
Yang
,
X. G.
, and
Miller
,
T.
,
2013
, “
Characterization of Cycle-Life Aging in Automotive Lithium-Ion Pouch Cells
,”
ECS Trans.
,
50
(
26
), pp.
235
247
.
19.
Bloom
,
I.
,
Jansen
,
A. N.
,
Abraham
,
D. P.
,
Knuth
,
J.
,
Jones
,
S. A.
,
Battaglia
,
V. S.
, and
Henriksen
,
G. L.
,
2005
, “
Differential Voltage Analyses of High-Power, Lithium-Ion Cells 1. Technique and Application
,”
J. Power Sources
,
139
(
1–2
), pp.
295
303
.
20.
Bloom
,
I.
,
Walker
,
L. K.
,
Basco
,
J. K.
,
Abraham
,
D. P.
,
Christophersen
,
J. P.
, and
Ho
,
C. D.
,
2010
, “
Differential Voltage Analyses of High-Power Lithium-Ion Cells 3. Another Anode Phenomenon
,”
J. Power Sources
,
195
(
3
), pp.
877
882
.
21.
Cordoba-Arenas
,
A.
,
Onori
,
S.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
,
2015
, “
Capacity and Power Fade Cycle-Life Model for Plug-in Hybrid Electric Vehicle Lithium-Ion Battery Cells Containing Blended Spinel and Layered-Oxide Positive Electrodes
,”
J. Power Sources
,
278
, pp.
473
483
..
22.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
.
23.
Dubarry
,
M.
,
Truchot
,
C.
,
Liaw
,
B. Y.
,
Gering
,
K.
,
Sazhin
,
S.
,
Jamison
,
D.
, and
Michelbacher
,
C.
,
2011
, “
Evaluation of Commercial Lithium-Ion Cells Based on Composite Positive Electrode for Plug-in Hybrid Electric Vehicle Applications—Part II: Degradation Mechanism Under 2 C Cycle Aging
,”
J. Power Sources
,
196
(
23
), pp.
10336
10343
.
24.
Osaka
,
T.
,
Nakade
,
S.
,
Rajamäki
,
M.
, and
Momma
,
T.
,
2003
, “
Influence of Capacity Fading on Commercial Lithium-Ion Battery Impedance
,”
J. Power Sources
,
119–121
, pp.
929
933
.
25.
Su
,
L.
,
Zhang
,
J.
,
Huang
,
J.
,
Ge
,
H.
,
Li
,
Z.
,
Xie
,
F.
, and
Liaw
,
B. Y.
,
2016
, “
Path Dependence of Lithium Ion Cells Aging Under Storage Conditions
,”
J. Power Sources
,
315
, pp.
35
46
.
26.
Ecker
,
M.
,
Gerschler
,
J. B.
,
Vogel
,
J.
,
Käbitz
,
S.
,
Hust
,
F.
,
Dechent
,
P.
, and
Sauer
,
D. U.
,
2012
, “
Development of a Lifetime Prediction Model for Lithium-Ion Batteries Based on Extended Accelerated Aging Test Data
,”
J. Power Sources
,
215
, pp.
248
257
.
27.
Ning, G.
,
Haran, B.
, and
Popov, B. N.
, 2003, “
Capacity Fade Study of Lithium-ion Batteries Cycled at High Discharge Rates
,”
J. Power Sources
,
117
(1), pp.160–169.
28.
USABC,
2001
, “
Electric Vehicle Battery Test Procedures Manual Rev. 2
,” U.S. Advanced Battery Consortium, USCAR LLC, Southfield, MI, p. 126A.
29.
Saha
,
B.
, and
Goebel
,
K.
,
2009
, “
Modeling Li-Ion Battery Capacity Depletion in a Particle Filtering Framework
,”
Annual Conference of the Prognostics and Health Management Society
, pp.
2909
2924
.
30.
Reichert
,
M.
,
Andre
,
D.
,
Rösmann
,
A.
,
Janssen
,
P.
,
Bremes
,
H. G.
,
Sauer
,
D. U.
,
Passerini
,
S.
, and
Winter
,
M.
,
2013
, “
Influence of Relaxation Time on the Lifetime of Commercial Lithium-Ion Cells
,”
J. Power Sources
,
239
, pp.
45
53
.
31.
Bloom, I.
,
Walker, L. K.
,
Basco, J. K.
,
Abraham, D. P.
,
Christophersen, J. P.
, and
Ho, C. D.
, “
Differential Voltage Analyses of High-Power Lithium-ion Cells. 4. Cells Containing NMC
,”
J. Power Sources
,
195
(3), pp. 877–882.
32.
Bloom
,
I.
,
Christophersen
,
J.
,
Abraham
,
D.
, and
Gering
,
K.
,
2006
, “
Differential Voltage Analyses of High-Power Lithium-Ion Cells—2. Applications
,”
J. Power Sources
,
139
(1–2), pp. 304–313.
33.
Dubarry
,
M.
,
Svoboda
,
V.
,
Hwu
,
R.
, and
Liaw
,
B. Y.
,
2007
, “
Capacity and Power Fading Mechanism Identification From a Commercial Cell Evaluation
,”
J. Power Sources
,
165
(
2
), pp.
566
572
.
You do not currently have access to this content.