Limited lifetime and performance degradation in lithium ion batteries in electrical vehicles and power tools is still a challenging obstacle which results from various interrelated processes, especially under specific conditions such as higher discharging rates (C-rates) and longer cycles. To elucidate these problems, it is very important to analyze electrochemical degradation from a mechanical stress point of view. Specifically, the goal of this study is to investigate diffusion-induced stresses and electrochemical degradation in three-dimensional (3D) reconstructed LiFePO4. We generate a reconstructed microstructure by using a stack of focused ion beam-scanning electron microscopy (FIB/SEM) images combined with an electrolyte domain. Our previous two-dimensional (2D) finite element model is further improved to a 3D multiphysics one, which incorporates both electrochemical and mechanical analyses. From our electrochemistry model, we observe 95.6% and 88.3% capacity fade at 1.2 C and 2 C, respectively. To investigate this electrochemical degradation, we present concentration distributions and von Mises stress distributions across the cathode with respect to the depth of discharge (DoD). Moreover, electrochemical degradation factors such as total polarization and over-potential are also investigated under different C-rates. Further, higher total polarization is observed at the end of discharging, as well as at the early stage of discharging. It is also confirmed that lithium intercalation at the electrode-electrolyte interface causes higher over-potential at specific DoDs. At the region near the separator, a higher concentration gradient and over-potential are observed. We note that higher over-potential occurs on the surface of electrode, and the resulting concentration gradient and mechanical stresses are observed in the same regions. Furthermore, mechanical stress variations under different C-rates are quantified during the discharging process. With these coupled mechanical and electrochemical analyses, the results of this study may be helpful for detecting particle crack initiation.

References

1.
Palacín
,
M. R.
, and
De Guibert
,
A.
,
2016
, “
Why Do Batteries Fail?
,”
Science
,
351
(
6273
), pp. 574–581.
2.
Kim
,
S.
, and
Huang
,
H.-Y. S.
,
2016
, “
Mechanical Stresses at the Cathode–Electrolyte Interface in Lithium-Ion Batteries
,”
J. Mater. Res.
,
31
(
22
), pp.
3506
3512
.
3.
Kim
,
S.
,
Wee
,
J.
,
Peters
,
K.
, and
Huang
,
H.-Y. S.
,
2018
, “
Multiphysics Coupling in Lithium-Ion Batteries With Reconstructed Porous Microstructures
,”
J. Phys. Chem. C
,
122
(
10
), pp.
5280
5290
.
4.
Xu
,
R.
, and
Zhao
,
K.
,
2016
, “
Mechanical Interactions Regulated Kinetics and Morphology of Composite Electrodes in Li-Ion Batteries
,”
Extrem. Mech. Lett.
,
8
, pp.
13
21
.
5.
Lu
,
B.
,
Song
,
Y.
,
Zhang
,
Q.
,
Pan
,
J.
,
Cheng
,
Y.-T.
, and
Zhang
,
J.
,
2016
, “
Voltage Hysteresis of Lithium Ion Batteries Caused by Mechanical Stress
,”
Phys. Chem. Chem. Phys.
,
18
(
6
), pp.
4721
4727
.
6.
Mendoza
,
H.
,
Roberts
,
S. A.
,
Brunini
,
V. E.
, and
Grillet
,
A. M.
,
2016
, “
Mechanical and Electrochemical Response of a LiCoO2 Cathode Using Reconstructed Microstructures
,”
Electrochim. Acta
,
190
, pp.
1
15
.
7.
Ghorbani Kashkooli
,
A.
,
Foreman
,
E.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Ahn
,
W.
,
Feng
,
K.
,
De Andrade
,
V.
, and
Chen
,
Z.
,
2017
, “
Synchrotron X-Ray Nano Computed Tomography Based Simulation of Stress Evolution in LiMn2O4electrodes
,”
Electrochim. Acta
,
247
, pp.
1103
1116
.
8.
Liu
,
Z.
,
Chen-Wiegart
,
Y. K.
,
Wang
,
J.
,
Barnett
,
S. A.
, and
Faber
,
K. T.
,
2016
, “
Three-Phase 3D Reconstruction of a LiCoO2 Cathode Via FIB-SEM Tomography
,”
Microsc. Microanal.
,
22
(
1
), pp.
140
148
.
9.
Biton
,
M.
,
Yufit
,
V.
,
Tariq
,
F.
,
Kishimoto
,
M.
, and
Brandon
,
N.
,
2017
, “
Enhanced Imaging of Lithium Ion Battery Electrode Materials
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
6032
6038
.
10.
Ender
,
M.
,
Joos
,
J.
,
Carraro
,
T.
, and
Ivers-Tiffee
,
E.
,
2012
, “
Quantitative Characterization of LiFePO4 Cathodes Reconstructed by FIB/SEM Tomography
,”
J. Electrochem. Soc.
,
159
(
7
), pp.
A972
A980
.
11.
Scipioni
,
R.
,
Jorgensen
,
P. S.
,
Ngo
,
D.-T.
,
Simonsen
,
S. B.
,
Liu
,
Z.
,
Yakal-Kremski
,
K. J.
,
Wang
,
H.
,
Hjelm
,
J.
,
Norby
,
P.
,
Barnett
,
S. A.
, and
Jensen
,
S. H.
,
2016
, “
Electron Microscopy Investigations of Changes in Morphology and Conductivity of LiFePO4/C Electrodes
,”
J. Power Sources
,
307
, pp.
259
269
.
12.
Kashkooli
,
A. G.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Feng
,
K.
,
Litster
,
S.
,
Babu
,
S. K.
,
Zhu
,
L.
, and
Chen
,
Z.
,
2016
, “
Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-Scale X-Ray Computed Tomography
,”
J. Power Sources
,
307
, pp.
496
509
.
13.
Christensen
,
J.
,
2010
, “
Modeling Diffusion-Induced Stress in Li-Ion Cells With Porous Electrodes
,”
J. Electrochem. Soc.
,
157
(
3
), pp.
A366
A380
.
14.
Tahmasebi
,
A.
,
Sedaghat
,
A.
,
Kalbasi
,
R.
, and
Zand
,
M. M.
,
2013
, “
Performance Assessment of a Hybrid Fuel Cell and Micro Gas Turbine Power System
,”
Energy Equip. Syst.
,
1
, pp.
59
74
.http://www.energyequipsys.com/article_2740_6c670cb4ab1e364b64d01c6c27c5efe7.pdf
15.
Kim, S., 2015, “
Stresses at Electrode-Electrolyte Interface in Lithium-Ion Batteries Via Multiphysics Modeling
,”
M.S. thesis
, North Carolina State University, Raleigh, NC.http://www.lib.ncsu.edu/resolver/1840.16/10671
16.
Zhu
,
M.
,
Park
,
J.
, and
Sastry
,
A. M.
,
2012
, “
Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
A492
A498
.
17.
Xu
,
R.
,
Scalco De Vasconcelos
,
L.
, and
Zhao
,
K.
,
2016
, “
Computational Analysis of Chemomechanical Behaviors of Composite Electrodes in Li-Ion Batteries
,”
J. Mater. Res.
,
31
(
18
), pp.
2715
2727
.
18.
ChiuHuang
,
C.-K.
, and
Huang
,
H.-Y. S.
,
2015
, “
Critical Lithiation for C-Rate Dependent Mechanical Stresses in LiFePO4
,”
J. Solid State Electrochem.
,
19
(
8
), pp.
2245
2253
.
19.
ChiuHuang
,
C.-K.
, and
Shadow Huang
,
H.-Y.
,
2013
, “
Stress Evolution on the Phase Boundary in LiFePO4 Particles
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
A2184
A2188
.
20.
Maxisch
,
T.
, and
Ceder
,
G.
,
2006
, “
Elastic Properties of Olivine LixFePO4 From First Principles
,”
Phys. Rev. B
,
73
(
17
), p. 174112.
You do not currently have access to this content.