An electrochemically stable hybrid structure material consisting of porous silicon (Si) nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxide (rGO) is developed as an anode material (Si/rGO/CNT) for full cell lithium-ion batteries (LIBs). In the developed hybrid material, the rGO provides a robust matrix with sufficient void space to accommodate the volume change of Si during lithiation/delithiation and a good electric contact. CNTs act as a mechanically stable and electrically conductive support to enhance the overall mechanical strength and conductivity. The developed Si/rGO/CNT composite anode has been first tested in half cell and then in full cell lithium-ion batteries. In half cell, the composite anode shows a high reversible capacity of 1100 mAh g−1 with good capacity retention over 500 cycles when cycled at 1 A g−1. In a full cell lithium-ion battery paired up with LiNi1/3Mn1/3Co1/3O2 (NMC) cathodes, the composite anode shows a specific charge capacity of 161.4 mAh g−1 and a discharge capacity of 152.8 mAh g−1, respectively, with a Coulombic efficiency of 94.7%.

References

References
1.
Philippe
,
B.
,
Dedryvère
,
R.
,
Gorgoi
,
M.
,
Rensmo
,
H.
,
Gonbeau
,
D.
, and
Edström
,
K.
,
2013
, “
Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study
,”
J. Am. Chem. Soc.
,
135
(
26
), pp.
9829
9842
.
2.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nano
,
3
(
1
), pp.
31
35
.
3.
Teki
,
R.
,
Datta
,
M. K.
,
Krishnan
,
R.
,
Parker
,
T. C.
,
Lu
,
T. M.
,
Kumta
,
P. N.
, and
Koratkar
,
N.
,
2009
, “
Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries
,”
Small
,
5
(
20
), pp.
2236
2242
.
4.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
5.
Kovalenko
,
I.
,
Zdyrko
,
B.
,
Magasinski
,
A.
,
Hertzberg
,
B.
,
Milicev
,
Z.
,
Burtovyy
,
R.
,
Luzinov
,
I.
, and
Yushin
,
G.
,
2011
, “
A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
,”
Science
,
334
(
6052
), pp.
75
79
.
6.
Chockla
,
A. M.
,
Harris
,
J. T.
,
Akhavan
,
V. A.
,
Bogart
,
T. D.
,
Holmberg
,
V. C.
,
Steinhagen
,
C.
,
Mullins
,
C. B.
,
Stevenson
,
K. J.
, and
Korgel
,
B. A.
,
2011
, “
Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material
,”
J. Am. Chem. Soc.
,
133
(
51
), pp.
20914
20921
.
7.
Ge
,
M.
,
Rong
,
J.
,
Fang
,
X.
, and
Zhou
,
C.
,
2012
, “
Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life
,”
Nano Lett.
,
12
(
5
), pp.
2318
2323
.
8.
Jing
,
S.
,
Jiang
,
H.
,
Hu
,
Y.
, and
Li
,
C.
,
2014
, “
Directly Grown Si Nanowire Arrays on Cu Foam With a Coral-like Surface for Lithium-Ion Batteries
,”
Nanoscale
,
6
(
23
), pp.
14441
14445
.
9.
Park
,
M. H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
10.
Yao
,
Y.
,
McDowell
,
M. T.
,
Ryu
,
I.
,
Wu
,
H.
,
Liu
,
N.
,
Hu
,
L.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2011
, “
Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life
,”
Nano Lett.
,
11
(
7
), pp.
2949
2954
.
11.
Zhao
,
Y.
,
Liu
,
X.
,
Li
,
H.
,
Zhai
,
T.
, and
Zhou
,
H.
,
2012
, “
Hierarchical Micro/Nano Porous Silicon Li-Ion Battery Anodes
,”
Chem. Commun.
,
48
(
42
), pp.
5079
5081
.
12.
Chen
,
X.
,
Li
,
X.
,
Ding
,
F.
,
Xu
,
W.
,
Xiao
,
J.
,
Cao
,
Y.
,
Meduri
,
P.
,
Liu
,
J.
,
Graff
,
G. L.
, and
Zhang
,
J. G.
,
2012
, “
Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes
,”
Nano Lett.
,
12
(
8
), pp.
4124
4130
.
13.
Zhong
,
Y.
,
Peng
,
F.
,
Bao
,
F.
,
Wang
,
S.
,
Ji
,
X.
,
Yang
,
L.
,
Su
,
Y.
,
Lee
,
S.-T.
, and
He
,
Y.
,
2013
, “
Large-Scale Aqueous Synthesis of Fluorescent and Biocompatible Silicon Nanoparticles and Their Use as Highly Photostable Biological Probes
,”
J. Am. Chem. Soc.
,
135
(
22
), pp.
8350
8356
.
14.
Magasinski
,
A.
,
Dixon
,
P.
,
Hertzberg
,
B.
,
Kvit
,
A.
,
Ayala
,
J.
, and
Yushin
,
G.
,
2010
, “
High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach
,”
Nat. Mater.
,
9
(
4
), pp.
353
358
.
15.
Deng
,
J.
,
Ji
,
H.
,
Yan
,
C.
,
Zhang
,
J.
,
Si
,
W.
,
Baunack
,
S.
,
Oswald
,
S.
,
Mei
,
Y.
, and
Schmidt
,
O. G.
,
2013
, “
Naturally Rolled-Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithium-Ion Batteries With Remarkable Cycling Performance
,”
Angew. Chem. Int. Ed.
,
52
(
8
), pp.
2326
2330
.
16.
Wu
,
H.
,
Zheng
,
G.
,
Liu
,
N.
,
Carney
,
T. J.
,
Yang
,
Y.
, and
Cui
,
Y.
,
2012
, “
Engineering Empty Space Between Si Nanoparticles for Lithium-Ion Battery Anodes
,”
Nano Lett.
,
12
(
2
), pp.
904
909
.
17.
Cui
,
L. F.
,
Hu
,
L.
,
Choi
,
J. W.
, and
Cui
,
Y.
,
2010
, “
Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries
,”
ACS Nano
,
4
(
7
), pp.
3671
3678
.
18.
Jung
,
D. S.
,
Hwang
,
T. H.
,
Park
,
S. B.
, and
Choi
,
J. W.
,
2013
, “
Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries
,”
Nano Lett.
,
13
(
5
), pp.
2092
2097
.
19.
Du
,
C.
,
Chen
,
M.
,
Wang
,
L.
, and
Yin
,
G.
,
2011
, “
Covalently-Functionalizing Synthesis of Si@C Core–Shell Nanocomposites as High-Capacity Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Chem.
,
21
(
39
), pp.
15692
15697
.
20.
Jeong
,
H. M.
,
Lee
,
S. Y.
,
Shin
,
W. H.
,
Kwon
,
J. H.
,
Shakoor
,
A.
,
Hwang
,
T. H.
,
Kim
,
S. Y.
,
Kong
,
B.-S.
,
Seo
,
J.-S.
,
Lee
,
Y. M.
,
Kang
,
J. K.
, and
Choi
,
J. W.
,
2012
, “
Silicon@Porous Nitrogen-Doped Carbon Spheres Through a Bottom-Up Approach Are Highly Robust Lithium-Ion Battery Anodes
,”
RSC Adv.
,
2
(
10
), pp.
4311
4317
.
21.
Liu
,
N.
,
Wu
,
H.
,
McDowell
,
M. T.
,
Yao
,
Y.
,
Wang
,
C.
, and
Cui
,
Y.
,
2012
, “
A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
,”
Nano Lett.
,
12
(
6
), pp.
3315
3321
.
22.
Gohier
,
A.
,
Laïk
,
B.
,
Kim
,
K.-H.
,
Maurice
,
J.-L.
,
Pereira-Ramos
,
J.-P.
,
Cojocaru
,
C. S.
, and
Van
,
P. T.
,
2012
, “
High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries
,”
Adv. Mater.
,
24
(
19
), pp.
2592
2597
.
23.
Wang
,
B.
,
Li
,
X.
,
Zhang
,
X.
,
Luo
,
B.
,
Jin
,
M.
,
Liang
,
M.
,
Dayeh
,
S. A.
,
Picraux
,
S. T.
, and
Zhi
,
L.
,
2013
, “
Adaptable Silicon–Carbon Nanocables Sandwiched Between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes
,”
ACS Nano
,
7
(
2
), pp.
1437
1445
.
24.
Zhou
,
X.
,
Cao
,
A.-M.
,
Wan
,
L.-J.
, and
Guo
,
Y.-G.
,
2012
, “
Spin-Coated Silicon Nanoparticle/Graphene Electrode as a Binder-Free Anode for High-Performance Lithium-Ion Batteries
,”
Nano Res.
,
5
(
12
), pp.
845
853
.
25.
Tang
,
H.
,
Tu
,
J.-P.
,
Liu
,
X.-Y.
,
Zhang
,
Y.-J.
,
Huang
,
S.
,
Li
,
W.-Z.
,
Wang
,
X.-L.
, and
Gu
,
C.-D.
,
2014
, “
Self-Assembly of Si/Honeycomb Reduced Graphene Oxide Composite Film as a Binder-Free and Flexible Anode for Li-Ion Batteries
,”
J. Mater. Chem. A
,
2
(
16
), pp.
5834
5840
.
26.
Wu
,
P.
,
Wang
,
H.
,
Tang
,
Y.
,
Zhou
,
Y.
, and
Lu
,
T.
,
2014
, “
Three-Dimensional Interconnected Network of Graphene-Wrapped Porous Silicon Spheres: In Situ Magnesiothermic-Reduction Synthesis and Enhanced Lithium-Storage Capabilities
,”
ACS Appl. Mater. Interfaces
,
6
(
5
), pp.
3546
3552
.
27.
Jing
,
S.
,
Jiang
,
H.
,
Hu
,
Y.
, and
Li
,
C.
,
2014
, “
Graphene Supported Mesoporous Single Crystal Silicon on Cu Foam as a Stable Lithium-Ion Battery Anode
,”
J. Mater. Chem. A
,
2
(
39
), pp.
16360
16364
.
28.
Xu
,
C.
,
Xu
,
B.
,
Gu
,
Y.
,
Xiong
,
Z.
,
Sun
,
J.
, and
Zhao
,
X. S.
,
2013
, “
Graphene-Based Electrodes for Electrochemical Energy Storage
,”
Energy Environ. Sci.
,
6
(
5
), pp.
1388
1414
.
29.
Chen
,
Y.
,
Di
,
X.
,
Ma
,
C.
,
Zhu
,
C.
,
Gao
,
P.
,
Li
,
J.
,
Sun
,
C.
, and
Ouyang
,
Q.
,
2013
, “
Graphene–MoO2 Hierarchical Nanoarchitectures: In Situ Reduction Synthesis and High Rate Cycling Performance as Lithium-Ion Battery Anodes
,”
RSC Adv.
,
3
(
39
), pp.
17659
17663
.
30.
Zhang
,
Y.
,
Wang
,
Y.
,
Xiong
,
Z.
,
Hu
,
Y.
,
Song
,
W.
,
Huang
,
Q.-A.
,
Cheng
,
X.
,
Chen
,
L.-Q.
,
Sun
,
C.
, and
Gu
,
H.
,
2017
, “
V2O5 Nanowire Composite Paper as a High-Performance Lithium-Ion Battery Cathode
,”
ACS Omega
,
2
(
3
), pp.
793
799
.
31.
Zhang
,
Y.
,
Lai
,
J.
,
Gong
,
Y.
,
Hu
,
Y.
,
Liu
,
J.
,
Sun
,
C.
, and
Wang
,
Z. L.
,
2016
, “
A Safe High-Performance All-Solid-State Lithium–Vanadium Battery With a Freestanding V2O5 Nanowire Composite Paper Cathode
,”
ACS Appl. Mater. Interfaces
,
8
(
50
), pp.
34309
34316
.
32.
Wepasnick
,
K. A.
,
Smith
,
B. A.
,
Schrote
,
K. E.
,
Wilson
,
H. K.
,
Diegelmann
,
S. R.
, and
Fairbrother
,
D. H.
,
2011
, “
Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments
,”
Carbon
,
49
(
1
), pp.
24
36
.
33.
Lee
,
W. J.
,
Hwang
,
T. H.
,
Hwang
,
J. O.
,
Kim
,
H. W.
,
Lim
,
J.
,
Jeong
,
H. Y.
,
Shim
,
J.
,
Han
,
T. H.
,
Kim
,
J. Y.
,
Choi
,
J. W.
, and
Kim
,
S. O.
,
2014
, “
N-Doped Graphitic Self-Encapsulation for High Performance Silicon Anodes in Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
621
626
.
34.
Li
,
D.
,
Muller
,
M. B.
,
Gilje
,
S.
,
Kaner
,
R. B.
, and
Wallace
,
G. G.
,
2008
, “
Processable Aqueous Dispersions of Graphene Nanosheets
,”
Nat. Nanotechnol.
,
3
(
2
), pp.
101
105
.
35.
Eckmann
,
A.
,
Felten
,
A.
,
Mishchenko
,
A.
,
Britnell
,
L.
,
Krupke
,
R.
,
Novoselov
,
K. S.
, and
Casiraghi
,
C.
,
2012
, “
Probing the Nature of Defects in Graphene by Raman Spectroscopy
,”
Nano Lett.
,
12
(
8
), pp.
3925
3930
.
36.
Erickson
,
K.
,
Erni
,
R.
,
Lee
,
Z.
,
Alem
,
N.
,
Gannett
,
W.
, and
Zettl
,
A.
,
2010
, “
Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide
,”
Adv. Mater.
,
22
(
40
), pp.
4467
4472
.
37.
Chang
,
J.
,
Huang
,
X.
,
Zhou
,
G.
,
Cui
,
S.
,
Hallac
,
P. B.
,
Jiang
,
J.
,
Hurley
,
P. T.
, and
Chen
,
J.
,
2014
, “
Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode
,”
Adv. Mater.
,
26
(
5
), pp.
758
764
.
38.
Gao
,
X.
,
Li
,
J.
,
Xie
,
Y.
,
Guan
,
D.
, and
Yuan
,
C.
,
2015
, “
A Multilayered Silicon-Reduced Graphene Oxide Electrode for High Performance Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
7
(
15
), pp.
7855
7862
.
39.
Xue
,
L.
,
Xu
,
G.
,
Li
,
Y.
,
Li
,
S.
,
Fu
,
K.
,
Shi
,
Q.
, and
Zhang
,
X.
,
2012
, “
Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks as Anode Material for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
5
(
1
), pp.
21
25
.
40.
Yin
,
S.
,
Zhang
,
Y.
,
Kong
,
J.
,
Zou
,
C.
,
Li
,
C. M.
,
Lu
,
X.
,
Ma
,
J.
,
Boey
,
F. Y. C.
, and
Chen
,
X.
,
2011
, “
Assembly of Graphene Sheets Into Hierarchical Structures for High-Performance Energy Storage
,”
ACS Nano
,
5
(
5
), pp.
3831
3838
.
41.
Hertzberg
,
B.
,
Alexeev
,
A.
, and
Yushin
,
G.
,
2010
, “
Deformations in Si−Li Anodes Upon Electrochemical Alloying in Nano-Confined Space
,”
J. Am. Chem. Soc.
,
132
(
25
), pp.
8548
8549
.
42.
Li
,
B.
,
Yao
,
F.
,
Bae
,
J. J.
,
Chang
,
J.
,
Zamfir
,
M. R.
,
Le
,
D. T.
,
Pham
,
D. T.
,
Yue
,
H.
, and
Lee
,
Y. H.
,
2015
, “
Hollow Carbon Nanospheres/Silicon/Alumina Core-Shell Film as an Anode for Lithium-Ion Batteries
,”
Sci. Rep.
,
5
(
1
), p.
7659
.
43.
Liu
,
N.
,
Hu
,
L.
,
McDowell
,
M. T.
,
Jackson
,
A.
, and
Cui
,
Y.
,
2011
, “
Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
,”
ACS Nano
,
5
(
8
), pp.
6487
6493
.
44.
Holtstiege
,
F.
,
Bärmann
,
P.
,
Nölle
,
R.
,
Winter
,
M.
, and
Placke
,
T.
,
2018
, “
Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges
,”
Batteries
,
4
(
1
), p.
4
.
45.
Xu
,
N.
,
Sun
,
X.
,
Zhao
,
F.
,
Jin
,
X.
,
Zhang
,
X.
,
Wang
,
K.
,
Huang
,
K.
, and
Ma
,
Y.
,
2017
, “
The Role of Pre-Lithiation in Activated Carbon/Li4Ti5O12 Asymmetric Capacitors
,”
Electrochim. Acta
,
236
, pp.
443
450
.
You do not currently have access to this content.