Heat is a by-product of all energy conversion mechanisms. Efforts to utilize and dissipate heat remain a challenge for further development and optimization of energy conversion devices. Stationary thermo-electrochemical cell is a low cost method to harvest heat; however, it suffers from low power density. Flow thermo-electrochemical cell (fTEC) heat sink presents itself as a unique solution as it can simultaneously scavenge and remove heat to maintain devices in the operating range. In this work, multiwalled nanotube (MWNT) electrodes have been used and electrode configuration has been changed to maximize the temperature difference over a small interelectrode separation. As a result, power per unit area of fTEC heat sink has been improved by more than seven-fold to 0.36 W/m2.

References

References
1.
Kazim
,
A. H.
,
Booeshaghi
,
A. S.
,
Stephens
,
S. T.
, and
Cola
,
B. A.
,
2017
, “
Thermo-Electrochemical Generator: Energy Harvesting & Thermoregulation for Liquid Cooling Applications
,”
Sustainable Energy Fuels
,
1
(
6
), pp. 1381–1389.
2.
Mahan
,
G.
,
Sales
,
B.
, and
Sharp
,
J.
,
1997
, “
Thermoelectric Materials: New Approaches to an Old Problem
,”
Phys. Today
,
50
(
3
), p. 42.
3.
Chen
,
G.
,
Dresselhaus
,
M.
,
Dresselhaus
,
G.
,
Fleurial
,
J.-P.
, and
Caillat
,
T.
,
2013
, “
Recent Developments in Thermoelectric Materials
,”
Int. Mater. Rev.
,
48
(1), pp. 45–66.
4.
Bonetti
,
M.
,
Nakamae
,
S.
,
Roger
,
M.
, and
Guenoun
,
P.
,
2011
, “
Huge Seebeck Coefficients in Nonaqueous Electrolytes
,”
J. Chem. Phys.
,
134
(
11
), pp.
1
9
.
5.
Mua
,
Y.
, and
Quickenden
,
1996
, “
Power Conversion Efficiency, Electrode Separation, and Overpotential in the Ferricyanide/Ferrocyanide Thermogalvanic Cell
,”
J. Electrochem. Soc.
,
143
(
8
), p.
2558
.
6.
Abraham
,
T. J.
,
MacFarlane
,
D. R.
,
Baughman
,
R. H.
,
Li
,
N.
,
Chen
,
Y.
, and
Pringle
,
J. M.
,
2013
, “
Protic Ionic Liquid-Based Thermoelectrochemical Cells for the Harvesting of Waste Heat
,”
MRS Proceedings
,
1575
, pp.
mrss13
1575-vv04 -08
.
7.
Quickenden
,
T.
, and
Vernon
,
C.
,
1986
, “
Thermogalvanic Conversion of Heat to Electricity
,”
Sol. Energy
,
36
(
1
), pp.
63
72
.
8.
Debethune
,
A. J.
,
Licht
,
T. S.
, and
Swendeman
,
N.
,
1959
, “
The Temperature Coefficients of Electrode Potentials—The Isothermal and Thermal Coefficients—The Standard Ionic Entropy of Electrochemical Transport of the Hydrogen Ion
,”
J. Electrochem. Soc.
,
106
(
7
), pp.
616
625
.
9.
Yee
,
E. L.
,
Cave
,
R. J.
,
Guyer
,
K. L.
,
Tyma
,
P. D.
, and
Weaver
,
M. J.
,
1979
, “
A Survey of Ligand Effects Upon the Reaction Entropies of Some Transition Metal Redox Couples
,”
J. Am. Chem. Soc.
,
101
(
22
), pp.
1131
1137
.
10.
Hupp
,
J. T.
, and
Weaver
,
M. J.
,
1984
, “
Solvent, Ligand, and Ionic Charge Effects on Reaction Entropies for Simple Transition-Metal Redox Couples
,”
Inorg. Chem.
,
23
(
22
), pp.
3639
3644
.
11.
Hornut
,
J.
, and
Storck
,
A.
,
1991
, “
Experimental and Theoretical Analysis of a Thermogalvanic Undivided Flow Cell With Two Aqueous Electrolytes at Different Temperatures
,”
J. Appl. Electrochem.
,
21
(
12
), pp.
1103
1113
.
12.
Josserand
,
J.
,
Devaud
,
V.
,
Lagger
,
G.
,
Jensen
,
H.
, and
Girault
,
H. H.
,
2004
, “
Hydrovoltaic Cells—Part II: Thermogalvanic Cells and Numerical Simulations of Thermal Diffusion Potentials
,”
J. Electroanal. Chem.
,
565
(
1
), pp.
65
75
.
13.
Armand
,
M.
,
Endres
,
F.
,
MacFarlane
,
D. R.
,
Ohno
,
H.
, and
Scrosati
,
B.
,
2009
, “
Ionic-Liquid Materials for the Electrochemical Challenges of the Future
,”
Nat. Mater.
,
8
(
8
), pp.
621
629
.
14.
MacFarlane
,
D. R.
,
Forsyth
,
M.
,
Howlett
,
P. C.
,
Kar
,
M.
,
Passerini
,
S.
,
Pringle
,
J. M.
,
Ohno
,
H.
,
Watanabe
,
M.
,
Yan
,
F.
,
Zheng
,
W.
, and
Zhang, S.
,
2016
, “
Ionic Liquids and Their Solid-State Analogues as Materials for Energy Generation and Storage
,”
Nat. Rev. Mater.
,
1
(
2
), p.
15005
.
15.
Kim
,
T.
,
Lee
,
J. S.
,
Lee
,
G.
,
Yoon
,
H.
,
Yoon
,
J.
,
Kang
,
T. J.
, and
Kim
,
Y. H.
,
2017
, “
High Thermopower of Ferri/Ferrocyanide Redox Couple in Organic-Water Solutions
,”
Nano Energy
,
31
, pp.
160
167
.
16.
Zhou
,
H.
,
Yamada
,
T.
, and
Kimizuka
,
N.
,
2016
, “
Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host–Guest Complexation and Salt-Induced Crystallization
,”
J. Am. Chem. Soc.
,
138
(
33
), pp.
10502
10507
.
17.
Abraham
,
T. J.
,
MacFarlane
,
D. R.
, and
Pringle
,
J. M.
,
2011
, “
Seebeck Coefficients in Ionic Liquids–Prospects for Thermo-Electrochemical Cells
,”
Chem. Commun.
,
47
(
22
), pp.
6260
6262
.
18.
Salazar
,
P. F.
,
Stephens
,
S. T.
,
Kazim
,
A. H.
,
Pringle
,
J.
, and
Cola
,
B. A.
,
2014
, “
Enhanced Thermo-Electrochemical Power Using Carbon Nanotube Additives in Ionic Liquid Redox Electrolytes
,”
J. Mater. Chem. A
,
2
(
48
), pp.
20676
20682
.
19.
Salazar
,
P. F.
,
Chan
,
K. J.
,
Stephens
,
S. T.
, and
Cola
,
B. A.
,
2014
, “
Enhanced Electrical Conductivity of Imidazolium-Based Ionic Liquids Mixed With Carbon Nanotubes: A Spectroscopic Study
,”
J. Electrochem. Soc.
,
161
(
9
), pp.
H481
H486
.
20.
Kazim
,
A. H.
, and
Cola
,
B. A.
,
2016
, “
Electrochemical Characterization of Carbon Nanotube and Poly (3, 4-Ethylenedioxythiophene)-Poly (Styrenesulfonate) Composite Aqueous Electrolyte for Thermo-Electrochemical Cells
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F867
F871
.
21.
Hu
,
R.
,
Cola
,
B. A.
,
Haram
,
N.
,
Barisci
,
J. N.
,
Lee
,
S.
,
Stoughton
,
S.
,
Wallace
,
G.
,
Too
,
C.
,
Thomas
,
M.
,
Gestos
,
A.
,
Dela Cruz
,
M. E.
,
Ferraris
,
J. P.
,
Zakhidov
,
A. A.
, and
Baughman
,
R. H.
,
2010
, “
Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell
,”
Nano Lett.
,
10
(
3
), pp.
838
846
.
22.
Romano
,
M. S.
,
Gambhir
,
S.
,
Razal
,
J. M.
,
Gestos
,
A.
,
Wallace
,
G. G.
, and
Chen
,
J.
,
2012
, “
Novel Carbon Materials for Thermal Energy Harvesting
,”
J. Therm. Anal. Calorim.
,
109
(
3
), pp.
1229
1235
.
23.
Im
,
H.
,
Kim
,
T.
,
Song
,
H.
,
Choi
,
J.
,
Park
,
J. S.
,
Ovalle-Robles
,
R.
,
Yang
,
H. D.
,
Kihm
,
K. D.
,
Baughman
,
R. H.
,
Lee
,
H. H.
, and
Kang, T. J.
,
2016
, “
High-Efficiency Electrochemical Thermal Energy Harvester Using Carbon Nanotube Aerogel Sheet Electrodes
,”
Nat. Commun.
,
7
, p. 10600.
24.
Romano
,
M. S.
,
Li
,
N.
,
Antiohos
,
D.
,
Razal
,
J. M.
,
Nattestad
,
A.
,
Beirne
,
S.
,
Fang
,
S.
,
Chen
,
Y.
,
Jalili
,
R.
,
Wallace
,
G. G.
, and
Baughman, R.
,
2013
, “
Carbon Nanotube–Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications
,”
Adv. Mater.
,
25
(
45
), pp.
6602
6606
.
25.
Kang
,
T. J.
,
Fang
,
S.
,
Kozlov
,
M. E.
,
Haines
,
C. S.
,
Li
,
N.
,
Kim
,
Y. H.
,
Chen
,
Y.
, and
Baughman
,
R. H.
,
2012
, “
Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters
,”
Adv. Funct. Mater.
,
22
(
3
), pp.
477
489
.
26.
Im
,
H.
,
Kang
,
T. J.
,
Kim
,
D. W.
, and
Kim
,
Y. H.
,
2012
, “
Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy
,”
J. Korean Soc. Aeronaut. Space Sci.
,
40
(
11
), pp.
1010
1015
.
27.
Gunawan
,
A.
,
Li
,
H.
,
Lin
,
C.-H.
,
Buttry
,
D. A.
,
Mujica
,
V.
,
Taylor
,
R. A.
,
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2014
, “
The Amplifying Effect of Natural Convection on Power Generation of Thermogalvanic Cells
,”
Int. J. Heat Mass Transfer
,
78
, pp.
423
434
.
28.
Zhang
,
L.
,
Kim
,
T.
,
Li
,
N.
,
Kang
,
T. J.
,
Chen
,
J.
,
Pringle
,
J. M.
,
Zhang
,
M.
,
Kazim
,
A. H.
,
Fang
,
S.
,
Haines
,
C.
, and
Al-Masri, D.
,
2017
, “
High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low-Grade Thermal Energy
,”
Adv. Mater.
,
29
(12), p. 1605652.
29.
Gunawan
,
A.
,
Fette
,
N. W.
, and
Phelan
,
P. E.
,
2015
, “
Thermogalvanic Waste Heat Recovery System in Automobiles
,”
ASME
Paper No. POWER2015-49094.
30.
Uhl
,
S.
,
Laux
,
E.
,
Journot
,
T.
,
Jeandupeux
,
L.
,
Charmet
,
J.
, and
Keppner
,
H.
,
2014
, “
Development of Flexible Micro-Thermo-Electrochemical Generators Based on Ionic Liquids
,”
J. Electron. Mater.
,
43
(
10
), pp.
3758
3764
.
31.
Im
,
H.
,
Moon
,
H. G.
,
Lee
,
J. S.
,
Chung
,
I. Y.
,
Kang
,
T. J.
, and
Kim
,
Y. H.
,
2014
, “
Flexible Thermocells for Utilization of Body Heat
,”
Nano Res.
,
7
(
4
), pp.
443
452
.
32.
Kazim
,
A. H.
,
2017
, “
Novel Electrolytes and System Designs for Thermo-Electrochemical Cells
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/58702
33.
Boccaccini
,
A. R.
,
Cho
,
J.
,
Roether
,
J. A.
,
Thomas
,
B. J.
,
Minay
,
E. J.
, and
Shaffer
,
M. S.
,
2006
, “
Electrophoretic Deposition of Carbon Nanotubes
,”
Carbon
,
44
(
15
), pp.
3149
3160
.
34.
Qian
,
W.
,
Cao
,
M.
,
Xie
,
F.
, and
Dong
,
C.
,
2016
, “
Thermo-Electrochemical Cells Based on Carbon Nanotube Electrodes by Electrophoretic Deposition
,”
Nano-Micro Lett.
,
8
(3), pp. 240–246.
35.
Talin
,
A. A.
,
Dean
,
K. A.
,
O'rourke
,
S. M.
,
Coll
,
B. F.
,
Stainer
,
M.
, and
Subrahmanyan
,
R.
,
2005
, “
Fed Cathode Structure Using Electrophoretic Deposition and Method of Fabrication
,” U.S. Patent No. 6,902,658.
36.
Oh
,
S.
,
Zhang
,
J.
,
Cheng
,
Y.
,
Shimoda
,
H.
, and
Zhou
,
O.
,
2004
, “
Liquid-Phase Fabrication of Patterned Carbon Nanotube Field Emission Cathodes
,”
Appl. Phys. Lett.
,
84
(
19
), pp.
3738
3740
.
37.
Zhao
,
H.
,
Song
,
H.
,
Li
,
Z.
,
Yuan
,
G.
, and
Jin
,
Y.
,
2005
, “
Electrophoretic Deposition and Field Emission Properties of Patterned Carbon Nanotubes
,”
Appl. Surf. Sci.
,
251
(
1–4
), pp.
242
244
.
38.
Chen
,
L.
,
Xie
,
H.
, and
Yu
,
W.
,
2012
, “
Multi-Walled Carbon Nanotube/Silver Nanoparticles Used for Thermal Transportation
,”
J. Mater. Sci.
,
47
(
14
), pp.
5590
5595
.
39.
Dong
,
R.-X.
,
Liu
,
C.-T.
,
Huang
,
K.-C.
,
Chiu
,
W.-Y.
,
Ho
,
K.-C.
, and
Lin
,
J.-J.
,
2012
, “
Controlling Formation of Silver/Carbon Nanotube Networks for Highly Conductive Film Surface
,”
ACS Appl. Mater. Interfaces
,
4
(
3
), pp.
1449
1455
.
40.
Qian
,
W.
,
Li
,
M.
,
Chen
,
L.
,
Zhang
,
J.
, and
Dong
,
C.
,
2015
, “
Improving Thermo-Electrochemical Cell Performance by Constructing Ag-MgO-CNTs Nanocomposite Electrodes
,”
RSC Adv.
,
5
(119), pp. 97982–97987.
41.
Bae
,
K. M.
,
Yang
,
H. D.
,
Tufa
,
L. T.
, and
Kang
,
T. J.
,
2015
, “
Thermobattery Based on CNT Coated Carbon Textile and Thermoelectric Electrolyte
,”
Int. J. Precis. Eng. Manuf.
,
16
(
7
), pp.
1245
1250
.
42.
Yang
,
H. D.
,
Tufa
,
L. T.
,
Bae
,
K. M.
, and
Kang
,
T. J.
,
2015
, “
A Tubing Shaped, Flexible Thermal Energy Harvester Based on a Carbon Nanotube Sheet Electrode
,”
Carbon
,
86
, pp.
118
123
.
43.
Salazar
,
P. F.
,
Kumar
,
S.
, and
Cola
,
B. A.
,
2012
, “
Nitrogen- and Boron-Doped Carbon Nanotube Electrodes in a Thermo-Electrochemical Cell
,”
J. Electrochem. Soc.
,
159
(
5
), p.
B483
.
44.
Abraham
,
T. J.
,
Tachikawa
,
N.
,
MacFarlane
,
D. R.
, and
Pringle
,
J. M.
,
2014
, “
Investigation of the Kinetic and Mass Transport Limitations in Thermoelectrochemical Cells With Different Electrode Materials
,”
Phys. Chem. Chem. Phys.
,
16
(
6
), pp.
2527
2532
.
45.
Kobayashi
,
W.
,
Kinoshita
,
A.
, and
Moritomo
,
Y.
,
2015
, “
Seebeck Effect in a Battery-Type Thermocell
,”
Appl. Phys. Lett.
,
107
(
7
), p. 73906.
46.
Bonetti
,
M.
,
Nakamae
,
S.
,
Huang
,
B. T.
,
Salez
,
T. J.
,
Wiertel-Gasquet
,
C.
, and
Roger
,
M.
,
2015
, “
Thermoelectric Energy Recovery at Ionic-Liquid/Electrode Interface
,”
J. Chem. Phys.
,
142
(
24
), p.
244708
.
47.
Lee
,
S. W.
,
Yang
,
Y.
,
Lee
,
H.-W.
,
Ghasemi
,
H.
,
Kraemer
,
D.
,
Chen
,
G.
, and
Cui
,
Y.
,
2014
, “
An Electrochemical System for Efficiently Harvesting Low-Grade Heat Energy
,”
Nat. Commun.
,
5
(
1
), p. 3942.
48.
Hirai
,
T.
,
Shindo
,
K.
, and
Ogata
,
T.
,
1996
, “
Charge and Discharge Characteristics of Thermochargeable Galvanic Cells With an [Fe (CN)6]4-/[Fe (CN)6]3− Redox Couple
,”
J. Electrochem. Soc.
,
143
(
4
), pp.
1305
1313
.
You do not currently have access to this content.