Three types of LiMn2O4 (LMO) microspheres with different pore size are prepared by a facile method, using porous MnCO3–MnO2 and Mn2O3 microspheres as the self-supporting template, for lithium ion batteries (LIBs) cathode material. Briefly, Mn2O3 and MnO2 microspheres are heated in air at 600 °C for 10 h to synthesize porous Mn2O3 spheres. Then the mixture of as-prepared spherical Mn2O3 and LiNO3 is calcined to obtain the LMOs. The morphology and structure of LMOs are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption/desorption analyses. The result shows that the maximum pore diameters of LMOs are 17 nm, 19 nm, and 11 nm, respectively. All LMOs microspheres are composed of similar sized nanoparticles; however, the surface of these microspheres is strewed with dense tinier pores or sparse larger pores. Generally, the nanoparticles will reduce the path of Li+ ion diffusion and increases the reaction sites for lithium insertion/extraction. Moreover, the pores can provide buffer spaces for the volume changes during charge–discharge process. The electrochemical performances of LMOs are investigated and LMO2 exhibits extremely good electrochemical behavior, especially the rate capability. The as-prepared LMO2 delivers a discharge capacity of 124.3 mAh g−1 at 0.5 C, retaining 79.6 mAh g−1 even at 5 C. The LMO2 sample also shows good capacity retention of 96.9% after 100 cycles at 0.5 C.

References

References
1.
Yuan
,
Z.
,
Zheng
,
H.
,
Wang
,
S.
, and
Feng
,
C.
,
2016
, “
Influences of Polyethylene Glycol (PEG) on the Performance of LiMn2O4 Cathode Material for Lithium Ion Battery
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
5
), pp.
5408
5414
.
2.
Cheng
,
F.
,
Liang
,
J.
,
Tao
,
Z.
, and
Chen
,
J.
,
2011
, “
Functional Materials for Rechargeable Batteries
,”
Adv. Mater.
,
23
(
15
), pp.
1695
1715
.
3.
Jiang
,
Q.
,
Wang
,
X.
, and
Zhang
,
H.
,
2016
, “
One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material With Excellent High-Rate and Cycling Properties
,”
J. Electron. Mater.
,
45
(
8
), pp.
4350
4356
.
4.
Li
,
S.
,
Lei
,
D.
,
Xue
,
Y.
,
Geng
,
S.
, and
Cui
,
X.
,
2017
, “
One-Step Solid-State Synthesis of Nanosized LiMn2O4 Cathode Material With Power Properties
,”
Ionics
,
23
(
8
), pp.
1
6
.
5.
Lee
,
M. J.
,
Lee
,
S.
,
Oh
,
P.
,
Kim
,
Y.
, and
Cho
,
J.
,
2014
, “
High Performance LiMn2O4 Cathode Materials Grown With Epitaxial Layered Nanostructure for Li-Ion Batteries
,”
Nano Lett.
,
14
(
2
), pp.
993
999
.
6.
Zhu
,
X.
,
Doan
,
T. N. L.
,
Yu
,
Y.
,
Tian
,
Y.
,
Sun
,
K. E. K.
,
Zhao
,
H.
, and
Chen
,
P.
,
2016
, “
Enhancing Rate Performance of LiMn2O4 Cathode in Rechargeable Hybrid Aqueous Battery by Hierarchical Carbon Nanotube/Acetylene Black Conductive Pathways
,”
Ionics
,
22
(
1
), pp.
71
76
.
7.
Wang
,
F.
,
Wang
,
J.
,
Ren
,
H.
,
Tang
,
H.
,
Yu
,
R.
, and
Wang
,
D.
,
2016
, “
Multi-Shelled LiMn2O4 Hollow Microspheres as Superior Cathode Materials for Lithium-Ion Batteries
,”
Inorg. Chem. Front.
,
3
(
3
), pp.
365
369
.
8.
Dai
,
K.
,
Mao
,
J.
,
Li
,
Z.
,
Zhai
,
Y.
,
Wang
,
Z.
,
Song
,
X.
,
Battaglia
,
V.
, and
Liu
,
G.
,
2014
, “
Microsized Single-Crystal Spinel LAMO for High-Power Lithium Ion Batteries Synthesized via Polyvinylpyrrolidone Combustion Method
,”
J. Power Sources
,
248
, pp.
22
27
.
9.
Cui
,
X.
,
Feng
,
H.
,
Xue
,
Y.
,
Geng
,
S.
, and
Li
,
S.
,
2017
, “
Convenient Synthesis and Electrochemical Performance Investigation of Nano-Sized LiMn2O4
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
12
), pp.
8529
8536
.
10.
Zhang
,
Q.
,
Mei
,
J.
,
Wang
,
X.
,
Guo
,
J.
,
Tang
,
F.
, and
Lu
,
W.
,
2014
, “
Facile Synthesis of Spherical Spinel LiMn2O4 Nanoparticles via Solution Combustion Synthesis by Controlling Calcinating Temperature
,”
J. Alloy. Compd.
,
617
, pp.
326
331
.
11.
Gao
,
X.
,
Sha
,
Y.
,
Lin
,
Q.
,
Cai
,
R.
,
Tade
,
M. O.
, and
Shao
,
Z.
,
2015
, “
Combustion-Derived Nanocrystalline LiMn2O4 as a Promising Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
275
, pp.
38
44
.
12.
Cai
,
Y.
,
Huang
,
Y.
,
Wang
,
X.
,
Jia
,
D.
, and
Tang
,
X.
,
2014
, “
Long Cycle Life, High Rate Capability of Truncated Octahedral LiMn2O4 Cathode Materials Synthesized by a Solid-State Combustion Reaction for Lithium Ion Batteries
,”
Ceram. Int.
,
40
(
9
), pp.
14039
14043
.
13.
Li
,
Z.
,
Ma
,
Z.
,
Wang
,
Y.
,
Chen
,
R.
,
Wu
,
Z.
, and
Wang
,
S.
,
2018
, “
LDHs Derived Nanoparticle-Stacked Metal Nitride as Interlayer for Long-Life Lithium Sulfur Batteries
,”
Sci. Bull.
,
63
(
3
), pp.
169
175
.
14.
Koo
,
B. R.
, and
Ahn
,
H. J.
,
2017
, “
Polyacrylonitrile Template-Assisted Formation of LiMn2O4 Nanoparticles for Lithium-Ion Batteries
,”
J. Ceram. Process. Res.
,
18
(3), pp.
207
213
.http://jcpr.kbs-lab.co.kr/file/JCPR_vol.18_2017/JCPR18-3/07.2017-022_207-213.pdf
15.
Xie
,
X.
,
Wang
,
X.
,
Zhang
,
Q.
, and
Tang
,
F.
,
2016
, “
Multiphase Combustion Synthesis and Enhanced Performance of LiMn2O4 Nanoparticles Using CNTs as a Fuel
,”
Mater. Res. Innovations
,
20
(
5
), pp.
327
331
.
16.
Zhang
,
H.
,
Xu
,
Y.
, and
Liu
,
D.
,
2015
, “
Novel Nanostructured LiMn2O4 Microspheres for High Power Li-Ion Batteries
,”
RSC Adv.
,
5
(
15
), pp.
11091
11095
.
17.
Li
,
B.
,
Wei
,
X.
,
Chang
,
Z.
,
Chen
,
X.
,
Yuan
,
X. Z.
, and
Wang
,
H.
,
2014
, “
Facile Fabrication of LiMn2O4 Microspheres From Multi-Shell MnO2 for High-Performance Lithium-Ion Batteries
,”
Mater. Lett.
,
135
, pp.
75
78
.
18.
Wang
,
Y. Z.
,
Shao
,
X.
,
Xu
,
H. Y.
,
Xie
,
M.
,
Deng
,
S. X.
,
Wang
,
H.
,
Liu
,
J. B.
, and
Yan
,
H.
,
2013
, “
Facile Synthesis of Porous LiMn2O4 Spheres as Cathode Materials for High-Power Lithium Ion Batteries
,”
J. Power Sources
,
226
, pp.
140
148
.
19.
Huang
,
X.
,
Yu
,
H.
,
Chen
,
J.
,
Lu
,
Z.
,
Yazami
,
R.
, and
Hng
,
H. H.
,
2014
, “
Ultrahigh Rate Capabilities of Lithium-Ion Batteries From 3D Ordered Hierarchically Porous Electrodes With Entrapped Active Nanoparticles Configuration
,”
Adv. Mater.
,
26
(
8
), pp.
1296
1303
.
20.
Kim
,
T. W.
, and
Choi
,
K. S.
,
2014
, “
Nanoporous BiVO4 Photoanodes With Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
,”
Science
,
343
(
6174
), pp.
990
994
.
21.
Cui
,
Z.
,
Zu
,
C.
,
Zhou
,
W.
,
Manthiram
,
A.
, and
Goodenough
,
J. B.
,
2016
, “
Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries
,”
Adv. Mater.
,
28
(
32
), pp.
6926
6931
.
22.
Ren
,
Y.
,
Ma
,
Z.
,
Morris
,
R. E.
,
Liu
,
Z.
,
Jiao
,
F.
,
Dai
,
S.
, and
Bruce
,
P. G.
,
2013
, “
A Solid With a Hierarchical Tetramodal Micro-Meso-Macro Pore Size Distribution
,”
Nat. Commun.
,
4
, p.
2015
.
23.
Yu
,
C.
,
Zhang
,
L.
,
Shi
,
J.
,
Zhao
,
J.
,
Gao
,
J.
, and
Yan
,
D.
,
2008
, “
A Simple Template‐Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides With Narrow Pore Size Distribution, and Their Electrochemical Properties
,”
Adv. Funct. Mater.
,
18
(
10
), pp.
1544
1554
.
24.
Shen
,
L. F.
,
Yuan
,
C. Z.
,
Luo
,
H. J.
,
Zhang
,
X. G.
, and
Xu
,
K.
,
2010
, “
Facile Synthesis of Hierarchically Porous Li4Ti5O12 Microspheres for High Power Lithium-Ion Batteries
,”
J. Mater. Chem.
,
20
(
33
), pp.
6998
7004
.
25.
Duan
,
L.
,
Zhang
,
X.
,
Yue
,
K.
,
Wu
,
Y.
,
Zhuang
,
J.
, and
Wei
,
L.
,
2017
, “
Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries
,”
Nano. Res. Lett.
,
12
, p.
109
.
26.
Zhu
,
W.
,
Lu
,
Z.
,
Lu
,
X.
,
Yin
,
F.
,
Li
,
W.
,
Ji
,
H.
, and
Yang
,
G.
,
2017
, “
Microemulsion Concentration in Preparation of LiMn2O4 Submicron Spherical Particles as Cathode Materials for Highly Reversible Lithium-Ion Batteries
,”
ChemElectroChem
,
4
(
12
), pp.
3204
3211
.
27.
Zou
,
Z.
,
Li
,
Z.
,
Zhang
,
H.
,
Wang
,
X.
, and
Jiang
,
C.
,
2017
, “
Copolymerization-Assisted Preparation of Porous LiMn2O4 Hollow Microspheres as High Power Cathode of Lithium-Ion Batteries
,”
J. Mater. Sci. Technol.
,
33
(
8
), pp.
781
787
.
28.
Yi
,
Z.
,
2016
, “
Rheological Phase Reaction Synthesis of Co-Doped LiMn2O4 Octahedral Particles
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
10
), pp.
10347
10352
.
29.
Sun
,
X.
,
Li
,
J.
,
Shi
,
C.
,
Wang
,
Z.
,
Liu
,
E.
,
He
,
C.
,
Du
,
X.
, and
Zhao
,
N.
,
2012
, “
Enhanced Electrochemical Performance of LiFePO4 Cathode With In Situ Chemical Vapor Deposition Synthesized Carbon Nanotubes as Conductor
,”
J. Power Sources
,
220
, pp.
264
268
.
You do not currently have access to this content.