In this study, a new type of redox flow battery (RFB) named “membrane-less hydrogen-iron RFB” was investigated for the first time. The membrane is a cell component dominating the cost of RFB, and iron is an abundant, inexpensive, and benign material, and thus, this iron RFB without the membrane is expected to provide a solution to the challenging issues of current battery systems such as high cost and safety concerns. The research focus in this study was placed on defining key design parameters to make this new system promising as an RFB. Crossing rate of reactants over carbon porous electrode (CPE) was controlled by modifying its pore structure with Teflon impregnation, and the effects of the Teflon on crossover, kinetic, Ohmic, and mass transfer was investigated by cell-based test and one-dimensional computational model. It was found that the cell performance (i.e., charge and discharge polarization) of the new membrane-less system was equivalent to that of the conventional membrane-system (i.e., RFB having a membrane). Especially, the Ohmic properties of the new system were constant and stable, while in the conventional membrane system, they were significantly varied and deteriorated as cell tests were continued, indicating that degradation or contamination of membrane affecting Ohmic properties could be mitigated effectively in the membrane-less system, which was found first in this research. The modeling analysis provided insight into the system, showing that the effect of reactant crossover on performance decay was not significant, and Teflon impregnation in the CPE caused significant kinetic and Ohmic losses by impeding ion transport and reactant access to reaction sites. From this study, it was found that the membrane-less H2-iron system is feasible and promising in resolving the challenge issues of the conventional systems. And the results of this study are expected to provide guidelines for research and development of flow battery systems without having a membrane.

References

References
1.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C. W.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
2.
Weber
,
A.
,
Mench
,
M.
,
Meyers
,
J.
,
Ross
,
P.
,
Gostick
,
J.
, and
Liu
,
Q.
,
2011
, “
Redox Flow Batteries: A Review
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1137
1164
.
3.
Cho
,
K. T.
,
Tucker
,
M. C.
, and
Weber
,
A. Z.
,
2016
, “
A Review of Hydrogen/Halogen Flow Cells
,”
Energy Technol.
,
4
(
6
), pp.
655
678
.
4.
Duduta
,
M.
,
Ho
,
B.
,
Wood
,
V. C.
,
Limthongkul
,
P.
,
Brunini
,
V. E.
,
Carter
,
W. C.
, and
Chiang
,
Y.-M.
,
2011
, “
Semi-Solid Lithium Rechargeable Flow Battery
,”
Adv. Energy Mater.
,
1
(
4
), pp.
511
516
.
5.
Jia
,
C.
,
Pan
,
F.
,
Zhu
,
Y. G.
,
Huang
,
Q.
,
Lu
,
L.
, and
Wang
,
Q.
,
2015
, “
High–Energy Density Nonaqueous All Redox Flow Lithium Battery Enabled With a Polymeric Membrane
,”
Sci. Adv.
,
1
(
10
), p.
e1500886
.
6.
Tolmachev
,
Y. V.
,
Piatkivskyi
,
A.
,
Ryzhov
,
V. V.
,
Konev
,
D. V.
, and
Vorotyntsev
,
M. A.
,
2015
, “
Energy Cycle Based on a High Specific Energy Aqueous Flow Battery and Its Potential Use for Fully Electric Vehicles and for Direct Solar-to-Chemical Energy Conversion
,”
J. Solid State Electrochem.
,
19
(
9
), pp.
2711
2722
.
7.
Cho
,
K. T.
,
Albertus
,
P.
,
Battaglia
,
V.
,
Kojic
,
A.
,
Srinivasan
,
V.
, and
Weber
,
A. Z.
,
2013
, “
Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage
,”
Energy Technol.
,
1
(
10
), pp.
596
608
.
8.
Kjeang
,
E.
,
Michel
,
R.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2008
, “
A Microfluidic Fuel Cell With Flow-Through Porous Electrodes
,”
J. Am. Chem. Soc.
,
130
(
12
), pp.
4000
4006
.
9.
Kjeang
,
E.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2009
, “
Microfluidic Fuel Cells: A Review
,”
J. Power Sources
,
186
(
2
), pp.
353
369
.
10.
Mousavi Shaegh
,
S. A.
,
Nguyen
,
N.-T.
, and
Chan
,
S. H.
,
2011
, “
A Review on Membraneless Laminar Flow-Based Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5675
5694
.
11.
Braff
,
W. A.
,
Bazant
,
M. Z.
, and
Buie
,
C. R.
,
2013
, “
Membrane-Less Hydrogen Bromine Flow Battery
,”
Nat Commun
,
4
(
1
), p.
2346
.
12.
Tucker
,
M.
,
Srinivasan
,
V.
,
Ross
,
P.
, and
Weber
,
A.
,
2013
, “
Performance and Cycling of the Iron-Ion/Hydrogen Redox Flow Cell With Various Catholyte Salts
,”
J. Appl. Electrochem.
,
43
(
7
), pp.
637
644
.
13.
Tucker
,
M. C.
,
Cho
,
K. T.
, and
Weber
,
A. Z.
,
2014
, “
Optimization of the Iron-Ion/Hydrogen Redox Flow Cell With Iron Chloride Catholyte Salt
,”
J. Power Sources
,
245
, pp.
691
697
.
14.
Alon
,
M.
,
Blum
,
A.
, and
Peled
,
E.
,
2013
, “
Feasibility Study of Hydrogen/Iron Redox Flow Cell for Grid-Storage Applications
,”
J. Power Sources
,
240
, pp.
417
420
.
15.
Watson
,
V.
,
Nguyen
,
D.
,
Effiong
,
E. E.
, and
Kalu
,
E. E.
,
2015
, “
Influence of Mixed Electrolyte on the Performance of Iron-Ion/Hydrogen Redox Flow Battery
,”
ECS Electrochem. Lett.
,
4
(
7
), pp.
A72
A75
.
16.
Hong
,
S.
,
Hou
,
M.
,
Zhang
,
H.
,
Jiang
,
Y.
,
Shao
,
Z.
, and
Yi
,
B.
,
2017
, “
A High-Performance PEM Fuel Cell With Ultralow Platinum Electrode Via Electrospinning and Underpotential Deposition
,”
Electrochim. Acta
,
245
, pp.
403
409
.
17.
Tucker
,
M.
,
Cho
,
K.
,
Weber
,
A.
,
Lin
,
G.
, and
Van Nguyen
,
T.
,
2015
, “
Optimization of Electrode Characteristics for the Br2/H2 Redox Flow Cell
,”
J. Appl. Electrochem.
,
45
(
1
), pp.
11
19
.
18.
Park
,
G.-G.
,
Sohn
,
Y.-J.
,
Yang
,
T.-H.
,
Yoon
,
Y.-G.
,
Lee
,
W.-Y.
, and
Kim
,
C.-S.
,
2004
, “
Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC
,”
J. Power Sources
,
131
(
1–2
), pp.
182
187
.
19.
Tucker
,
M. C.
,
Cho
,
K. T.
,
Spingler
,
F. B.
,
Weber
,
A. Z.
, and
Lin
,
G.
,
2015
, “
Impact of Membrane Characteristics on the Performance and Cycling of the Br2–H2 Redox Flow Cell
,”
J. Power Sources
,
284
, pp.
212
221
.
20.
Cho
,
K. T.
,
Tucker
,
M. C.
,
Ding
,
M.
,
Ridgway
,
P.
,
Battaglia
,
V. S.
,
Srinivasan
,
V.
, and
Weber
,
A. Z.
,
2015
, “
Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage
,”
ChemPlusChem
,
80
(
2
), pp.
402
411
.
21.
Cho
,
K. T.
,
Ridgway
,
P.
,
Weber
,
A. Z.
,
Haussener
,
S.
,
Battaglia
,
V.
, and
Srinivasan
,
V.
,
2012
, “
High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage
,”
J. Electrochem. Soc
,
159
(
11
), pp.
A1806
A1815
.
22.
Kusoglu
,
A.
,
Cho
,
K. T.
,
Prato
,
R. A.
, and
Weber
,
A. Z.
,
2013
, “
Structural and Transport Properties of Nafion in Hydrobromic-Acid Solutions
,”
Solid State Ionics
,
252
, pp.
68
74
.
23.
Tang
,
Z.
,
Svoboda
,
R.
,
Lawton
,
J. S.
,
Aaron
,
D. S.
,
Papandrew
,
A. B.
, and
Zawodzinski
,
T. A.
,
2013
, “
Composition and Conductivity of Membranes Equilibrated With Solutions of Sulfuric Acid and Vanadyl Sulfate
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
F1040
F1047
.
24.
Okada
,
T.
,
Ayato
,
Y.
,
Yuasa
,
M.
, and
Sekine
,
I.
,
1999
, “
The Effect of Impurity Cations on the Transport Characteristics of Perfluorosulfonated Ionomer Membranes
,”
J. Phys. Chem. B
,
103
(
17
), pp.
3315
3322
.
25.
Okada
,
T.
,
2010
, “
Effect of Ionic Contaminants
,”
Handbook of Fuel Cells
,
Wiley
, Hoboken, NJ.
26.
Skyllas-Kazacos
,
M.
,
2003
, “
Novel Vanadium Chloride/Polyhalide Redox Flow Battery
,”
J. Power Sources
,
124
(
1
), pp.
299
302
.
27.
Chan
,
K. Y.
, and
Savinell
,
R. F.
,
1991
, “
Modeling Calculations of an Aluminum‐Air Cell
,”
J. Electrochem. Soc.
,
138
(
7
), pp.
1976
1984
.
28.
Muñoz
,
C. A. P.
,
Dewage
,
H. H.
,
Yufit
,
V.
, and
Brandon
,
N. P.
,
2017
, “
A Unit Cell Model of a Regenerative Hydrogen-Vanadium Fuel Cell
,”
J. Electrochem. Soc.
,
164
(
14
), pp.
F1717
F1732
.
29.
Revankar
,
S.
, and
Majumdar
,
P.
,
2014
,
Fuel Cells: Principles, Design, and Analysis
,
CRC Press
,
Boca Raton, FL
.
30.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2004
, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A399
A406
.
31.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2004
,
Electrochemical Systems
,
Wiley
,
Hoboken, NJ
.
32.
Mench
,
M. M.
,
2008
,
Fuel Cell Engines
,
Wiley
,
Hoboken, NJ
.
33.
Sun
,
B.
, and
Skyllas-Kazakos
,
M.
,
1991
, “
Chemical Modification and Electrochemical Behaviour of Graphite Fibre in Acidic Vanadium Solution
,”
Electrochim. Acta
,
36
(
3–4
), pp.
513
517
.
34.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—I: Thermal Treatment
,”
Electrochim. Acta
,
37
(
7
), pp.
1253
1260
.
35.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—Part II: Acid Treatments
,”
Electrochim. Acta
,
37
(
13
), pp.
2459
2465
.
36.
Collins
,
J.
,
Kear
,
G.
,
Li
,
X.
,
Low
,
C. T. J.
,
Pletcher
,
D.
,
Tangirala
,
R.
,
Stratton-Campbell
,
D.
,
Walsh
,
F. C.
, and
Zhang
,
C.
,
2010
, “
A Novel Flow Battery: A Lead Acid Battery Based on an Electrolyte With Soluble Lead(II)—Part VIII: The Cycling of a 10 cm × 10 cm Flow Cell
,”
J. Power Sources
,
195
(
6
), pp.
1731
1738
.
37.
Xue
,
F.-Q.
,
Wang
,
Y.-L.
,
Wang
,
W.-H.
, and
Wang
,
X.-D.
,
2008
, “
Investigation on the Electrode Process of the Mn(II)/Mn(III) Couple in Redox Flow Battery
,”
Electrochim. Acta
,
53
(
22
), pp.
6636
6642
.
38.
Ito
,
Y.
,
Nyce
,
M.
,
Plivelich
,
R.
,
Klein
,
M.
,
Steingart
,
D.
, and
Banerjee
,
S.
,
2011
, “
Zinc Morphology in Zinc–Nickel Flow Assisted Batteries and Impact on Performance
,”
J. Power Sources
,
196
(
4
), pp.
2340
2345
.
You do not currently have access to this content.