An asymmetric, inorganic ion-conducting membrane was synthesized by depositing a top layer containing silica-immobilized phosphotungstic acid (Si-PWA) over a graphite sheet. Surface morphology, thermal stability, and structure of the top layer of the membrane were studied using scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), respectively. The transport number and specific conductivity of the membrane were measured using membrane potential and impedance measurements, respectively. The composition of the top layer was varied by changing the molar ratio of PWA and tetraethoxy orthosilicate (TEOS) in the casting sol. The transport number and specific conductivity of the membrane increased on increasing PWA fraction in the casting solution. The highest transport number for sodium ion was 0.98 for PWA: TEOS molar ratio of 1.5. Specific conductivity of the membrane, with 0.5 PWA: TEOS, was 0.0082 S cm−1 which was lower compared to the membrane with 1.5 PWA: TEOS of specific conductivity 0.017 S cm−1. The specific conductivity of the membrane increased with increase in the temperature for both 0.5 and 1.5 molar ratio of PWA: TEOS with the calculated activation energy 18.9 and 8.8 kJ/mol, respectively.

References

References
1.
Energy
,
U. S. D.
,
2000
,
Fuel Cell Handbook
,
5th ed.
,
Science Applications International Corporation/E&G Services Parson
, McLean, VA.
2.
Kamarudin
,
S. K.
,
Ahmad
,
F.
, and
Daud
,
W. R. W.
,
2009
, “
Overview on Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6902
6916
.
3.
Xianguo
,
L.
,
2006
,
Principles of Fuel Cells
,
3rd ed.
,
Taylor & Francis
,
New York
.
4.
Ahmad
,
H.
,
Kamarudin
,
S. K.
,
Harsan
,
U. A.
, and
Daud
,
W. R. W.
,
2010
, “
Overview of Hybrid Membranes for Direct Methanol Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
35
(
5
), pp.
2160
2175
.
5.
Coutanceau
,
C.
,
Koffi
,
R. K.
,
Leger
,
J. M.
,
Marestin
,
K.
,
Mercier
,
R.
,
Nayoze
,
C.
, and
Capron, P.
,
2006
, “
Development of Materials for Mini DMFC Working at Room Temperature for Portable Applications
,”
J. Power Sources
,
160
(
1
), pp.
334
339
.
6.
Zhang
,
N.
,
Zhang
,
G.
,
Xu
,
D.
,
Zhao
,
C.
,
Ma
,
W.
,
Li
,
H.
,
Zhang
,
Y.
,
Xu
,
S.
,
Jiang
,
H.
,
Sun
,
H.
, and
Na
,
H.
,
2011
, “
Cross-Linked Membranes Based on Sulfonated Poly (Ether Ether Ketone) (SPEEK)/Nafion for Direct Methanol Fuel Cells (DMFCs)
,”
Int. J. Hydrogen Energy
,
36
(
17
), pp.
11025
11033
.
7.
Chen
,
S.
,
Bocarsly
,
A. B.
, and
Benziger
,
J.
,
2005
, “
Nafion-Layered Sulfonated Polysulfone Fuel Cell Membranes
,”
J. Power Sources
,
152
(1), pp.
27
33
.
8.
Woo
,
Y.
,
Oh
,
S. Y.
,
Kang
,
Y. S.
, and
Jung
,
B.
,
2003
, “
Synthesis and Characterization of Sulfonated Polyimide Membranes for Direct Methanol Fuel Cell
,”
J. Membr. Sci.
,
220
(
1–2
), pp.
31
45
.
9.
Wycisk
,
R.
,
Chisholm
,
J.
,
Lee
,
J.
,
Lin
,
J.
, and
Pintauro
,
P. N.
,
2006
, “
Direct Methanol Fuel Cell Membranes From Nafion–Polybenzimidazole Blends
,”
J. Power Sources
,
163
(
1
), pp.
9
17
.
10.
Ren
,
S.
,
Sun
,
G.
,
Li
,
C.
,
Song
,
S.
,
Xin
,
Q.
, and
Yang
,
X.
,
2006
, “
Sulfonated Zirconia–Nafion Composite Membranes for Higher Temperature Direct Methanol Fuel Cells
,”
J. Power Sources
,
157
(
2
), pp.
724
726
.
11.
Alberti
,
G.
,
Casciola
,
M.
,
Capitani
,
D.
,
Donnadio
,
A.
,
Narducci
,
R.
,
Pica
,
M.
, and
Sganappa
,
M.
,
2007
, “
Novel Nafion–Zirconium Phosphate Nanocomposite Membranes With Enhanced Stability of Proton Conductivity at Medium Temperature and High Relative Humidity
,”
Electrochim. Acta
,
52
(
28
), pp.
8125
8132
.
12.
Tominaga
,
Y.
,
Hong
,
I.
,
Asai
,
S.
, and
Sumita
,
M.
,
2007
, “
Proton Conduction in Nafion Composite Membranes Filled With Mesoporous Silica
,”
J. Power Sources
,
171
(
2
), pp.
530
534
.
13.
Jung
,
D. H.
,
Cho
,
S. Y.
,
Peck
,
D. H.
,
Shin
,
D. R.
, and
Kim
,
J. S.
,
2002
, “
Performance Evaluation of a Nafion/Silicon Oxide Hybrid Membrane for Direct Methanol Fuel Cell
,”
J. Power Sources
,
106
(
1–2
), pp.
173
177
.
14.
Dimitrova
,
P.
,
Friedrich
,
K. A.
,
Stimming
,
U.
, and
Vogt
,
B.
,
2002
, “
Modified Nafion®-Based Membranes for Use in Direct Methanol Fuel Cells
,”
Solid State Ionics
,
150
(
1–2
), pp.
115
122
.
15.
Pu
,
H.
, and
Liu
,
Q.
,
2004
, “
Methanol Permeability and Proton Conductivity of Polybenzimidazole and Sulfonated Polybenzimidazole
,”
Polym. Int.
,
53
(
10
), pp.
1512
1516
.
16.
Ramani
,
V.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
,
2005
, “
Stabilized Heteropolyacid/Nafion® Composite Membranes for Elevated Temperature/Low Relative Humidity PEFC Operation
,”
Electrochim. Acta
,
50
(
5
), pp.
1181
1187
.
17.
Thakkar
,
R.
, and
Chudasama
,
U.
,
2009
, “
Synthesis, Characterization and Proton Transport Property of Crystalline zirconium Titanium Phosphate, a Tetravalent Bimetallic Acid Salts
,”
J. Sci. Ind. Res.
,
68
(4), pp.
312
318
.http://nopr.niscair.res.in/handle/123456789/3494
18.
Vaivars
,
G.
,
Maxakato
,
S. N. W.
,
Mokrani
,
T.
,
Petrik
,
L.
,
Klavins
,
J.
,
Gericke
,
G.
, and
Linkov
,
V.
,
2004
, “
Zirconium Phosphate Based Inorganic Direct Methanol Fuel Cell
,”
Mater. Sci.
,
10
(2), pp. 1392–1320.https://www.researchgate.net/publication/242193281_Zirconium_Phosphate_Based_Inorganic_Direct_Methanol_Fuel_Cell
19.
Izumi
,
Y.
,
Hisano
,
K.
, and
Hida
,
T.
,
1999
, “
Acid Catalysis of Silica-Included Heteropolyacid in Polar Reaction Media
,”
Appl. Catal., A
,
181
(
2
), pp. 277–282.
20.
Lu
,
J.
,
Tang
,
H.
,
Lu
,
S.
,
Wu
,
H.
, and
Jiang
,
S. P.
,
2011
, “
A Novel Inorganic Proton Exchange Membrane Based on Self-Assembled HPW-Mesosilica for Direct Methanol Fuel Cell
,”
J. Mater. Chem.
,
21
(
18
), pp.
6668
6676
.
21.
Tang
,
H.
,
Pan
,
M.
, and
Jiang
,
S. P.
,
2011
, “
Self Assembled 12-Tungstophosphoric Acid–Silica Mesoporous Nanocomposites as Proton Exchange Membranes for Direct Alcohol Fuel Cells
,”
Dalton Trans.
,
40
(
19
), pp.
5220
5227
.
22.
Lu
,
S. F.
,
Wang
,
D. L.
,
Jiang
,
S. P.
,
Xiang
,
Y.
,
Lu
,
J. L.
, and
Zeng
,
J.
,
2010
, “
HPW/MCM-41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Proton-Exchange Membranes for Elevated-Temperature Fuel Cells
,”
Adv. Mater
,
22
(
9
), pp.
971
976
.
23.
Xu
,
T.
, and
Hu
,
K.
,
2004
, “
A Simple Determination of Counter-Ionic Permselectivity in an Ion Exchange Membrane Using of Bi-Ionic Membrane Potential: Permselectivity of Anionic Species in a Novel Anion Exchange Membrane
,”
Sep. Purif. Technol.
,
40
(
3
), pp.
231
236
.
24.
Zuo
,
X.
,
Yu
,
S.
,
Xu
,
X.
,
Bao
,
R.
,
Xu
,
J.
, and
Qu
,
W.
,
2009
, “
Preparation of Organic-Inorganic Hybrid Cation-Exchange Membranes Via Blending Method and Their Electrochemical Characterization
,”
J. Membr. Sci.
,
328
(
1–2
), pp.
23
30
.
25.
Ettre
,
L. S.
,
1993
, “
Nomenclature for Chromatography (IUPAC Recommendations 1993)
,”
Pure Appl. Chem.
,
65
(
4
), pp.
819
872
.
26.
Hasani-Sadrabadi
,
M. M.
,
Dashtimoghadam
,
E.
,
Majedi
,
F. S.
, and
Kabiri
,
K.
,
2009
, “
Nafion®/Bio-Functionalized Montmorillonite Nanohybrids as Novel Polyelectrolyte Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
,
190
(
2
), pp.
318
321
.
27.
Mahreni
,
A.
,
Mohamad
,
A. B.
,
Kadhum
,
A. A. H.
,
Daud
,
W. R. W.
, and
Iyuke
,
S. E.
,
2009
, “
Nafion/Silicon Oxide/Phosphotungstic Acid Nanocomposite Membrane With Enhanced Proton Conductivity
,”
J. Membr. Sci.
,
327
(
1–2
), pp.
32
40
.
28.
Dogan
,
H.
,
Inan
,
T. Y.
,
Unveren
,
E.
, and
Kaya
,
M.
,
2010
, “
Effect of Cesium Salt of Tungstophosphoric Acid (Cs-TPA) on the Properties of Sulfonated Polyether Ether Ketone (SPEEK) Composite Membranes for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
35
(
15
), pp.
7784
7795
.
29.
Amirinejad
,
M.
,
Madaenia
,
S. S.
,
Navarrab
,
M. A.
,
Rafieec
,
E.
, and
Scrosati
,
B.
,
2011
, “
Preparation and Characterization of Phosphotungstic Acid-Derived Salt/Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
196
(
3
), pp.
988
998
.
30.
Choi
,
P.
,
Jalani
,
N. H.
,
Thampan
,
T. M.
, and
Dutta
,
R.
,
2006
, “
Consideration of Thermodynamic, Transport, and Mechanical Properties in the Design of Polymer Electrolyte Membranes for Higher Temperature Fuel Cell Operation
,”
J. Polym. Sci. Part B
,
44
(
16
), pp.
2180
2200
.
31.
Tang
,
H.
,
Pan
,
M.
, and
Jiang
,
S. P.
,
2010
, “
One-Step Synthesized HPW/Meso-Silica Inorganic Proton Exchange Membranes for Fuel Cells
,”
Chem. Commun.
,
46
(
24
), pp.
4351
4353
.
32.
Shang
,
F.
,
Li
,
L.
,
Zhang
,
Y.
, and
Li
,
H.
,
2009
, “
PWA/Silica/PFSA Composite Membrane for Direct Methanol Fuel Cells
,”
J. Mater. Sci.
,
44
(
16
), pp.
4383
4388
.
33.
Mioc
,
U. B.
,
Milonjic
,
S. K.
,
Malovic
,
D.
,
Stamenkovic
,
V.
,
Colomband
,
P.
,
Mitrovic
,
M. M.
, and
Dimitrijevic
,
R.
,
1997
, “
Structure and Proton Conductivity of 12-Tungstophosphoric Acid Doped Silica
,”
Solid State Ionics
,
97
(
1–4
), pp.
239
246
.
34.
Li
,
L.
,
Xu
,
L.
, and
Wang
,
Y.
,
2003
, “
Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell
,”
Mater. Lett.
,
57
(
8
), pp.
1406
1410
.
35.
Staiti
,
P.
,
Minutoli
,
M.
, and
Hocevar
,
S.
,
2000
, “
Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application
,”
J. Power Sources
,
90
(
2
), pp.
231
235
.
You do not currently have access to this content.