A thin and mechanically stable solid electrolyte interphase (SEI) is desirable for a stable cyclic performance in a lithium ion battery. For the electrodes that undergo a large volume expansion, such as Si, Ge, and Sn, the presence of a robust SEI layer can improve the capacity retention. In this work, the role of solvent choice on the electrochemical performance of Ge electrode is presented by a systematic comparison of the SEI layers in ethylene carbonate (EC)-based and fluoroethylene carbonate (FEC)-based electrolytes. The results show that the presence of FEC as a cosolvent in a binary or ternary solvent electrolyte results in an excellent capacity retention of ∼85% after 200 cycles at the current density of 500 mA g−1; while EC-based electrode suffers a rapid capacity degradation with a capacity retention of just 17% at the end of 200 cycles. Post analysis by an extensive use of X-ray photoelectron spectroscopy (XPS) was carried out, which showed that the presence of Li2O in FEC-based SEIs was the origin for the improved electrochemical performance.

References

References
1.
Ashuri
,
M.
,
He
,
Q.
, and
Shaw
,
L. L.
,
2016
, “
Silicon as a Potential Anode Material for Li-Ion Batteries: Where Size, Geometry and Structure Matter
,”
Nanoscale
,
8
(
1
), pp.
74
103
.
2.
Liu
,
J.
,
Kopold
,
P.
,
van Aken
,
P. A.
,
Maier
,
J.
, and
Yu
,
Y.
,
2015
, “
Energy Storage Materials From Nature Through Nanotechnology: A Sustainable Route From Reed Plants to a Silicon Anode for Lithium-Ion Batteries
,”
Angew. Chem., Int. Ed.
,
54
(
33
), pp.
9632
9636
.
3.
Agubra
,
V.
, and
Fergus
,
J.
,
2013
, “
Lithium Ion Battery Anode Aging Mechanisms
,”
Materials
,
6
(
4
), p.
1310
.
4.
Ploehn
,
H. J.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2004
, “
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A456
A462
.
5.
Qian
,
J.
,
Henderson
,
W. A.
,
Xu
,
W.
,
Bhattacharya
,
P.
,
Engelhard
,
M.
,
Borodin
,
O.
, and
Zhang
,
J.-G.
,
2015
, “
High Rate and Stable Cycling of Lithium Metal Anode
,”
Nat. Commun.
,
6
, p.
6362
.
6.
Liu
,
W.-R.
,
Guo
,
Z.-Z.
,
Young
,
W.-S.
,
Shieh
,
D.-T.
,
Wu
,
H.-C.
,
Yang
,
M.-H.
, and
Wu
,
N.-L.
,
2005
, “
Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive
,”
J. Power Sources
,
140
(
1
), pp.
139
144
.
7.
Li
,
X.
,
Gu
,
M.
,
Hu
,
S.
,
Kennard
,
R.
,
Yan
,
P.
,
Chen
,
X.
,
Wang
,
C.
,
Sailor
,
M. J.
,
Zhang
,
J.-G.
, and
Liu
,
J.
,
2014
, “
Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-Ion Battery Anodes
,”
Nat. Commun.
,
5
, p.
4105
.
8.
Li
,
X.
,
Meduri
,
P.
,
Chen
,
X.
,
Qi
,
W.
,
Engelhard
,
M. H.
,
Xu
,
W.
,
Ding
,
F.
,
Xiao
,
J.
,
Wang
,
W.
,
Wang
,
C.
,
Zhang
,
J.-G.
, and
Liu
,
J.
,
2012
, “
Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes
,”
J. Mater. Chem.
,
22
(
22
), pp.
11014
11017
.
9.
McMillan
,
R.
,
Slegr
,
H.
,
Shu
,
Z. X.
, and
Wang
,
W.
,
1999
, “
Fluoroethylene Carbonate Electrolyte and Its Use in Lithium Ion Batteries With Graphite Anodes
,”
J. Power Sources
,
81–82
, pp.
20
26
.
10.
Ngo
,
D. T.
,
Le
,
H. T. T.
,
Kim
,
C.
,
Lee
,
J.-Y.
,
Fisher
,
J. G.
,
Kim
,
I.-D.
, and
Park
,
C.-J.
,
2015
, “
Mass-Scalable Synthesis of 3D Porous Germanium-Carbon Composite Particles as an Ultra-High Rate Anode for Lithium Ion Batteries
,”
Energy Environ. Sci.
,
8
, pp.
3577
3588
.
11.
Dimov
,
N.
,
Kugino
,
S.
, and
Yoshio
,
M.
,
2003
, “
Carbon-Coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations
,”
Electrochim. Acta
,
48
(
11
), pp.
1579
1587
.
12.
Han
,
Y.
,
Qi
,
P.
,
Zhou
,
J.
,
Feng
,
X.
,
Li
,
S.
,
Fu
,
X.
,
Zhao
,
J.
,
Yu
,
D.
, and
Wang
,
B.
,
2015
, “
Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
7
(
48
), pp.
26608
26613
.
13.
Chen
,
X.
,
Li
,
X.
,
Mei
,
D.
,
Feng
,
J.
,
Hu
,
M. Y.
,
Hu
,
J.
,
Engelhard
,
M.
,
Zheng
,
J.
,
Xu
,
W.
,
Xiao
,
J.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2014
, “
Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid–Electrolyte Interphase Film on Silicon Anode
,”
ChemSusChem
,
7
(
2
), pp.
549
554
.
14.
Klavetter
,
K. C.
,
Wood
,
S. M.
,
Lin
,
Y.-M.
,
Snider
,
J. L.
,
Davy
,
N. C.
,
Chockla
,
A. M.
,
Romanovicz
,
D. K.
,
Korgel
,
B. A.
,
Lee
,
J.-W.
,
Heller
,
A.
, and
Mullins
,
C. B.
,
2013
, “
A High-Rate Germanium-Particle Slurry Cast Li-Ion Anode With High Coulombic Efficiency and Long Cycle Life
,”
J. Power Sources
,
238
, pp.
123
136
.
15.
Xu
,
C.
,
Lindgren
,
F.
,
Philippe
,
B.
,
Gorgoi
,
M.
,
Björefors
,
F.
,
Edström
,
K.
, and
Gustafsson
,
T.
,
2015
, “
Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive
,”
Chem. Mater.
,
27
(
7
), pp.
2591
2599
.
16.
Wang
,
Z.-C.
,
Xu
,
J.
,
Yao
,
W.-H.
,
Yao
,
Y.-W.
, and
Yang
,
Y.
,
2012
, “
Fluoroethylene Carbonate as an Electrolyte Additive for Improving the Performance of Mesocarbon Microbead Electrode
,”
ECS Trans.
,
41
(41), pp.
29
40
.
17.
Ue
,
M.
,
Sasaki
,
Y.
,
Tanaka
,
Y.
, and
Morita
,
M.
,
2014
, “
Nonaqueous Electrolytes With Advances in Solvents
,”
Electrolytes for Lithium and Lithium-Ion Batteries
,
Springer
, New York, pp.
93
165
.
18.
Jow
,
T. R.
,
Xu
,
K.
,
Borodin
,
O.
, and
Ue
,
M.
,
2014
,
Electrolytes for Lithium and Lithium-Ion Batteries
, Vol.
58
,
Springer
, New York.
19.
Etacheri
,
V.
,
Haik
,
O.
,
Goffer
,
Y.
,
Roberts
,
G. A.
,
Stefan
,
I. C.
,
Fasching
,
R.
, and
Aurbach
,
D.
,
2011
, “
Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
,”
Langmuir
,
28
(
1
), pp.
965
976
.
20.
Malmgren
,
S.
,
Ciosek
,
K.
,
Lindblad
,
R.
,
Plogmaker
,
S.
,
Kühn
,
J.
,
Rensmo
,
H.
,
Edström
,
K.
, and
Hahlin
,
M.
,
2013
, “
Consequences of Air Exposure on the Lithiated Graphite SEI
,”
Electrochim. Acta
,
105
, pp.
83
91
.
21.
Michan
,
A. L.
,
Divitini
,
G.
,
Pell
,
A. J.
,
Leskes
,
M.
,
Ducati
,
C.
, and
Grey
,
C. P.
,
2016
, “
Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
,”
J. Am. Chem. Soc.
,
138
(
25
), pp.
7918
7931
.
22.
Rong
,
H.
,
Jiang
,
Z.
,
Cheng
,
S.
,
Chen
,
B.
,
Zhen
,
Z.
,
Deng
,
B.
,
Qin
,
Y.
,
Xie
,
G.
,
Jiang
,
Z.-J.
, and
Liu
,
M.
,
2017
, “
Significantly Enhanced Electrochemical Performance of a ZnCo2O4 Anode in a Carbonate Based Electrolyte With Fluoroethylene Carbonate
,”
RSC Adv.
,
7
(
30
), pp.
18491
18499
.
23.
Schroder
,
K.
,
Alvarado
,
J.
,
Yersak
,
T. A.
,
Li
,
J.
,
Dudney
,
N.
,
Webb
,
L. J.
,
Meng
,
Y. S.
, and
Stevenson
,
K. J.
,
2015
, “
The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
,”
Chem. Mater.
,
27
(
16
), pp.
5531
5542
.
24.
Kanamura
,
K.
,
Shiraishi
,
S.
,
Takezawa
,
H.
, and
Takehara
,
Z.-I.
,
1997
, “
XPS Analysis of the Surface of a Carbon Electrode Intercalated by Lithium Ions
,”
Chem. Mater.
,
9
(
8
), pp.
1797
1804
.
25.
Edström
,
K.
,
Herstedt
,
M.
, and
Abraham
,
D. P.
,
2006
, “
A New Look at the Solid Electrolyte Interphase on Graphite Anodes in Li-Ion Batteries
,”
J. Power Sources
,
153
(
2
), pp.
380
384
.
26.
Ismail
,
I.
,
Noda
,
A.
,
Nishimoto
,
A.
, and
Watanabe
,
M.
,
2001
, “
XPS Study of Lithium Surface After Contact With Lithium-Salt Doped Polymer Electrolytes
,”
Electrochim. Acta
,
46
(
10–11
), pp.
1595
1603
.
27.
Tasaki
,
K.
,
Goldberg
,
A.
,
Lian
,
J.-J.
,
Walker
,
M.
,
Timmons
,
A.
, and
Harris
,
S. J.
,
2009
, “
Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
,”
J. Electrochem. Soc.
,
156
(
12
), pp.
A1019
A1027
.
28.
Qian
,
J.
,
Xu
,
W.
,
Bhattacharya
,
P.
,
Engelhard
,
M.
,
Henderson
,
W. A.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2015
, “
Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive
,”
Nano Energy
,
15
, pp.
135
144
.
29.
Nguyen
,
C. C.
, and
Lucht
,
B. L.
,
2014
, “
Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
A1933
A1938
.
30.
Chen
,
Y. C.
,
Ouyang
,
C. Y.
,
Song
,
L. J.
, and
Sun
,
Z. L.
,
2011
, “
Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase From Density Functional Theory Study
,”
J. Phys. Chem. C
,
115
(
14
), pp.
7044
7049
.
31.
Aurbach
,
D.
,
Markovsky
,
B.
,
Weissman
,
I.
,
Levi
,
E.
, and
Ein-Eli
,
Y.
,
1999
, “
On the Correlation Between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries
,”
Electrochim. Acta
,
45
(1–2), pp.
67
86
.
32.
Lin
,
Y.-M.
,
Klavetter
,
K. C.
,
Abel
,
P. R.
,
Davy
,
N. C.
,
Snider
,
J. L.
,
Heller
,
A.
, and
Mullins
,
C. B.
,
2012
, “
High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-Ion Batteries
,”
Chem. Commun.
,
48
(
58
), pp.
7268
7270
.
33.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2004
, “
Electrochemical Impedance Study on the Low Temperature of Li-Ion Batteries
,”
Electrochim. Acta
,
49
(
7
), pp.
1057
1061
.
34.
Nie
,
M.
,
Chalasani
,
D.
,
Abraham
,
D. P.
,
Chen
,
Y.
,
Bose
,
A.
, and
Lucht
,
B. L.
,
2013
, “
Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
,”
J. Phys. Chem. C
,
117
(
3
), pp.
1257
1267
.
35.
Schroder
,
K. W.
,
Celio
,
H.
,
Webb
,
L. J.
, and
Stevenson
,
K. J.
,
2012
, “
Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
,”
J. Phys. Chem. C
,
116
(
37
), pp.
19737
19747
.
You do not currently have access to this content.