The effects of particle size distribution on compacted density of as-prepared spherical lithium iron phosphate (LFP) LFP-1 and LFP-2 materials electrode for high-performance 18650 Li-ion batteries are investigated systemically, while the selection of two commercial materials LFP-3 and LFP-4 as a comparison. The morphology study and physical characterization results show that the LFP materials are composed of numerous particles with an average size of 300–500 nm, and have well-developed interconnected pore structure and a specific surface area of 13–15 m2/g. For CR2032 coin-type cell, the specific discharge capacities of the LFP-1 and LFP-2 are about 165 mAh/g at 0.2 C. For 18650 batteries, results indicate that the LFP-3 material has the highest compacted density of 2.52 g/cm3 at a concentrated particle size distribution such as D10 = 0.56 μm, D50 = 1.46 μm, and D90 = 6.53 μm. By mixing two different particle sizes of LFP-1 and LFP-2, the compaction density can be increased significantly from 1.90 g/cm3 to 2.25 g/cm3.

References

References
1.
Yoo
,
E. J.
,
Kim
,
J.
,
Hosono
,
E.
,
Zhou
,
H.
,
Kudo
,
T.
, and
Honma
,
I.
,
2008
, “
Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries
,”
Nano Lett.
,
8
(
8
), p.
2277
.
2.
Zhang
,
W. J.
,
2011
, “
Structure and Performance of LiFePO4 Cathode Materials: A Review
,”
J. Power Sources
,
196
(
6
), pp.
2962
2970
.
3.
Du
,
J.
,
Jiao
,
L.
,
Wu
,
Q.
,
Liu
,
Y.
,
Qi
,
Z.
,
Guo
,
L.
,
Wang
,
Y.
, and
Yuan
,
H.
,
2013
, “
Mesoporous LiFePO4 Microspheres for Rechargeable Lithium-Ion Batteries
,”
Electrochim. Acta
,
98
, pp.
288
293
.
4.
Oh
,
S. W.
,
Bang
,
H. J.
,
Myung
,
S. T.
,
Bae
,
Y. C.
,
Lee
,
S. M.
, and
Sun
,
Y. K.
,
2008
, “
The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C – LiFePO4 Prepared Via Coprecipitation
,”
J. Electrochem. Soc.
,
155
(
6
), pp.
A414
A420
.
5.
Oh
,
S. W.
,
Myung
,
S. T.
,
Oh
,
S. M.
,
Chong
,
S. Y.
,
Amine
,
K.
, and
Sun
,
Y. K.
,
2010
, “
Polyvinylpyrrolidone-Assisted Synthesis of Microscale C-LiFePO4 With High Tap Density as Positive Electrode Materials for Lithium Batteries
,”
Electrochim. Acta
,
55
(
3
), pp.
1193
1199
.
6.
Fey
,
G. T. K.
,
Lin
,
Y. C.
, and
Kao
,
H. M.
,
2012
, “
Characterization and Electrochemical Properties of High Tap-Density LiFePO4/C Cathode Materials by a Combination of Carbothermal Reduction and Molten Salt Methods
,”
Electrochim. Acta
,
80
(
10
), pp.
41
49
.
7.
Delacourt
,
C.
,
Poizot
,
P.
,
Levasseur
,
S.
, and
Masquelier
,
C.
,
2006
, “
Size Effects on Carbon-Free LiFePO4 Powders the Key to Superior Energy Density
,”
Electrochem. Solid-State Lett.
,
9
(
7
), pp.
A352
A355
.
8.
Padhi
,
A. K.
,
Goodenough
,
J. B.
, and
Nanjundaswamy
,
K. S.
,
1997
, “
Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
144
(
4
), pp.
1188
1194
.
9.
Eftekhari
,
A.
,
2017
, “
LiFePO4/C Nanocomposites for Lithium-Ion Batteries
,”
J. Power Sources
,
343
, pp.
395
411
.
10.
Wang
,
G. X.
,
Yang
,
L.
,
Bewlay
,
S. L.
,
Chen
,
Y.
,
Liu
,
H. K.
, and
Ahn
,
J. H.
,
2005
, “
Electrochemical Properties of Carbon Coated LiFePO4 Cathode Materials
,”
J. Power Sources
,
146
(
1–2
), pp.
521
524
.
11.
Liu
,
Q. B.
,
Liao
,
S. J.
,
Song
,
H. Y.
, and
Liang
,
Z. X.
,
2012
, “
High-Performance LiFePO4/C Materials: Effect of Carbon Source on Microstructure and Performance
,”
J. Power Sources
,
211
(
211
), pp.
52
58
.
12.
Wu
,
X. L.
,
Jiang
,
L. Y.
,
Cao
,
F. F.
,
Guo
,
Y. G.
, and
Wan
,
L. J.
,
2009
, “
LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy–Storage Devices
,”
Adv. Mater.
,
21
(
25–26
), pp.
2710
2714
.
13.
Liu
,
Y.
,
Liu
,
D.
,
Zhang
,
Q.
,
Yu
,
D.
,
Liu
,
J.
, and
Cao
,
G.
,
2011
, “
Lithium Iron Phosphate/Carbon Nanocomposite Film Cathodes for High Energy Lithium Ion Batteries
,”
Electrochim. Acta
,
56
(
5
), pp.
2559
2565
.
14.
Qiu
,
B.
,
Zhang
,
Q.
,
Hu
,
H.
,
Wang
,
J.
,
Liu
,
J.
,
Xia
,
Y.
,
Zeng
,
Y.
,
Wang
,
X.
, and
Liu
,
Z.
,
2014
, “
Electrochemical Investigation of Li-Excess Layered Oxide Cathode Materials/Mesocarbon Microbead in 18650 Batteries
,”
Electrochim. Acta
,
123
(
10
), pp.
317
324
.
15.
Ping
,
W.
,
Geng
,
Z.
,
Li
,
Z.
,
Sheng
,
W.
,
Zhang
,
Y.
,
Gu
,
J.
,
Zheng
,
X.
, and
Cao
,
F.
,
2016
, “
Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources
,”
ACS Appl. Mater. Interfaces
,
8
(
40
), pp.
26908
26915
.
16.
Sofyan
,
N.
,
Setiadanu
,
G. T.
,
Zulfia
,
A.
, and
Kartini
,
E.
,
2017
, “
Effect of Different Calcination Temperatures and Carbon Coating on the Characteristics of LiFePO4 Prepared by Hydrothermal Route
,”
Int. J. Eng. Technol.
,
9
(
4
), pp.
3310
3317
.
17.
Chang
,
Z.-R.
,
Lv
,
H. J.
,
Tang
,
H. W.
,
Li
,
H.-J.
,
Yuan
,
X. Z.
, and
Wang
,
H.
,
2009
, “
Synthesis and Characterization of High-Density LiFePO4/C Composites as Cathode Materials for Lithium-Ion Batteries
,”
Electrochim. Acta
,
54
(
20
), pp.
4595
4599
.
18.
Li
,
Y.
,
Meyer
,
S.
,
Lim
,
J.
,
Lee
,
S. C.
,
Gent
,
W. E.
,
Marchesini
,
S.
,
Krishnan
,
H.
,
Tyliszczak
,
T.
,
Shapiro
,
D.
, and
Kilcoyne
,
A. L.
,
2015
, “
Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes
,”
Adv. Mater.
,
27
(
42
), p.
6591
.
19.
Ferrari
,
S.
,
Lavall
,
R. L.
,
Capsoni
,
D.
,
Quartarone
,
E.
,
Magistris
,
A.
,
Mustarelli
,
P.
, and
Canton
,
P.
,
2010
, “
Influence of Particle Size and Crystal Orientation on the Electrochemical Behavior of Carbon-Coated LiFePO4
,”
J. Phys. Chem. C
,
114
(
29
), pp.
12598
12603
.
20.
Kang
,
B.
, and
Ceder
,
G.
,
2009
, “
Battery Materials for Ultrafast Charging and Discharging
,”
Nature
,
458
(
7235
), pp.
190
193
.
21.
Fey
,
T. K.
,
Chen
,
Y. G.
, and
Kao
,
H. M.
,
2009
, “
Electrochemical Properties of LiFePO4 Prepared Via Ball-Milling
,”
J. Power Sources
,
189
(
1
), pp.
169
178
.
22.
Hu
,
Y.
,
Doeff
,
M. M.
,
Kostecki
,
R.
, and
FiñOnes
,
R.
,
2004
, “
Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries
,”
J. Electrochem. Soc.
,
151
(
8
), pp.
A1279
A1285
.
23.
Yu
,
S.
,
Chung
,
Y.
,
Min
,
S. S.
,
Jin
,
H. N.
, and
Cho
,
W. I.
,
2012
, “
Investigation of Design Parameter Effects on High Current Performance of Lithium-Ion Cells With LiFePO4/Graphite Electrodes
,”
J. Appl. Electrochem.
,
42
(
6
), pp.
443
453
.
24.
Yu
,
S.
,
Kim
,
S.
,
Kim
,
T. Y.
,
Jin
,
H. N.
, and
Cho
,
W. I.
,
2013
, “
Transportation Properties in Nanosized LiFePO4 Positive Electrodes and Their Effects on the Cell Performance
,”
J. Appl. Electrochem.
,
43
(
3
), pp.
253
262
.
25.
Guan
,
X. M.
,
Li, G. J.
,
Li, C. Y.
, and
Ren
,
R. M.
,
2017
, “
Synthesis of Porous Nano/Micro Structured LiFePO4/C Cathode Materials for Lithium-Ion Batteries by Spray-Drying Method
,”
Trans. Nonferrous Met. Soc. China
,
27
(
1
), pp.
141
147
.
26.
Palomares
,
V.
,
Goñi
,
A.
,
Muro
,
I. G. D.
,
Meatza
,
I. D.
,
Bengoechea
,
M.
,
Cantero
,
I.
, and
Rojo
,
T.
,
2010
, “
Conductive Additive Content Balance in Li-Ion Battery Cathodes: Commercial Carbon Blacks Vs. In Situ Carbon From LiFePO4/C Composites
,”
J. Power Sources
,
195
(
22
), pp.
7661
7668
.
27.
Zhang
,
X. M.
,
Liao
,
X. Z.
,
Wang, L.
, and
Ma, Z. F.
,
2007
, “
Effect of Electrode Preparation Technology and Electrolytes on the Performance of LiFePO4 Cathode Material for Lithium Ion Battery
,”
J. Chem. Eng. Chin. Univ.
,
21
(
1
), pp.
54
58
.
28.
Munakata
,
H.
,
Takemura
,
B.
,
Saito
,
T.
, and
Kanamura
,
K.
,
2012
, “
Evaluation of Real Performance of LiFePO4 by Using Single Particle Technique
,”
J. Power Sources
,
217
(
217
), pp.
444
448
.
You do not currently have access to this content.