As a kind of common bio-waste, willow catkin is of no economic value. But it is surprising that it can be an ideal carbonaceous source and bio-template for electrode materials of lithium-ion batteries and supercapacitors. Herein, we demonstrate that microtubular hard carbon can be derived from willow catkins and used as an anode of sodium-ion batteries (SIBs). The sample obtained from carbonization at 1000 °C delivers a high reversible capacity of 210 mAh g−1, good rate capability, and excellent cycling stability (112 mAh g−1 at 1000 mA g−1 after 1600 cycles) due to its unique tubular structure and the N-doping characteristic. The present work affords a new candidate for the production of hard carbon materials with tubular microstructure using natural biomass, and develops a highly promising anode material for SIBs.

References

References
1.
Slater
,
M. D.
,
Kim
,
D.
,
Lee
,
E.
, and
Johnson
,
C. S.
,
2013
, “
Sodium-Ion Batteries
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
947
958
.
2.
Yabuuchi
,
N.
,
Kubota
,
K.
,
Dahbi
,
M.
, and
Komaba
,
S.
,
2014
, “
Research Development on Sodium-Ion Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11636
11682
.
3.
Kundu
,
D.
,
Talaie
,
E.
,
Duffort
,
V.
, and
Nazar
,
L. F.
,
2015
, “
The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
,”
Angew. Chem. Int. Edit.
,
54
(
11
), pp.
3431
3448
.
4.
Luo
,
W.
,
Shen
,
F.
,
Bommier
,
C.
,
Zhu
,
H.
,
Ji
,
X.
, and
Hu
,
L.
,
2016
, “
Na-Ion Battery Anodes: Materials and Electrochemistry
,”
Acc. Chem. Res.
,
49
(
2
), pp.
231
240
.
5.
Zhang
,
Q.
,
Wang
,
W.
,
Wang
,
Y.
,
Feng
,
P.
,
Wang
,
K.
,
Cheng
,
S.
, and
Jiang
,
K.
,
2016
, “
Controllable Construction of 3D-Skeleton-Carbon Coated Na3V2(PO4)3 for High-Performance Sodium Ion Battery Cathode
,”
Nano Energy
,
20
, pp.
11
19
.
6.
Law
,
M.
,
Ramar
,
V.
, and
Balaya
,
P.
,
2017
, “
Na2MnSiO4 as an Attractive High Capacity Cathode Material for Sodium-Ion Battery
,”
J. Power Sources
,
359
, pp.
277
284
.
7.
Chang
,
C.
,
Li
,
Y.
,
He
,
W.
,
Li
,
G.
,
Guo
,
W.
,
Zhu
,
P.
,
Yao
,
M.
, and
Feng
,
J.
,
2017
, “
NaVPO4F Prepared Under Air as a Cathode Material for Sodium-Ion Batteries
,”
Mater. Lett.
,
209
, pp.
82
85
.
8.
Ge
,
P.
, and
Fouletier
,
M.
,
1988
, “
Electrochemical Intercalation of Sodium in Graphite
,”
Solid State Ionics
,
28
, pp.
1172
1175
.
9.
Stevens
,
D. A.
, and
Dahn
,
J. R.
,
2001
, “
The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
,”
J. Electrochem. Soc
,
148
(
8
), pp.
A803
A811
.
10.
Liu
,
Y.
,
Cheng
,
Z.
,
Sun
,
H.
,
Arandiyan
,
H.
,
Li
,
J.
, and
Ahmad
,
M.
,
2015
, “
Mesoporous Co3O4 Sheets/3D Graphene Networks Nanohybrids for High-Performance Sodium-Ion Battery Anode
,”
J. Power Sources
,
273
, pp.
878
884
.
11.
Dirican
,
M.
,
Lu
,
Y.
,
Ge
,
Y.
,
Yildiz
,
O.
, and
Zhang
,
X.
,
2015
, “
Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material
,”
ACS Appl. Mater. Interfaces
,
7
(
33
), pp.
18387
18396
.
12.
Zhang
,
Y.
,
Zhu
,
P.
,
Huang
,
L.
,
Xie
,
J.
,
Zhang
,
S.
,
Cao
,
G.
, and
Zhao
,
X.
,
2015
, “
Few-Layered SnS2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode With Ultralong Cycle Life and Superior Rate Capability
,”
Adv. Funct. Mater.
,
25
(
3
), pp.
481
489
.
13.
Su
,
D.
,
Dou
,
S.
, and
Wang
,
G.
,
2015
, “
Ultrathin MoS2 Nanosheets as Anode Materials for Sodium-Ion Batteries With Superior Performance
,”
Adv. Energy Mater.
,
5
(
6
), p.
1401205
.
14.
Liu
,
S. L.
,
Huang
,
J.
,
Liu
,
J.
,
Lei
,
M.
,
Li
,
S.
, and
Liu
,
G.
,
2016
, “
Porous Mo2N Nanobelts as a New Anode Material for Sodium-Ion Batteries
,”
Mater. Lett.
,
172
, pp.
56
59
.
15.
Li
,
X.
,
Hector
,
A. L.
,
Owen
,
J. R.
, and
Shah
,
S. I. U.
,
2016
, “
Evaluation of Nanocrystalline Sn3N4 Derived From Ammonolysis of Sn(NEt2)4 as a Negative Electrode Material for Li-Ion and Na-Ion Batteries
,”
J. Mater. Chem. A
,
4
(
14
), pp.
5081
5087
.
16.
Liu
,
Y.
,
Zhang
,
N.
,
Jiao
,
L.
,
Tao
,
Z.
, and
Chen
,
J.
,
2015
, “
Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries
,”
Adv. Funct. Mater.
,
25
(
2
), pp.
214
220
.
17.
Wang
,
X.
,
Fan
,
L.
,
Gong
,
D.
,
Zhu
,
J.
,
Zhang
,
Q.
, and
Lu
,
B.
,
2016
, “
Core-Shell Ge@Graphene@TiO2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and Sodium Ion Battery
,”
Adv. Funct. Mater.
,
26
(
7
), pp.
1104
1111
.
18.
Balogun
,
M. S.
,
Luo
,
Y.
,
Qiu
,
W.
,
Liu
,
P.
, and
Tong
,
Y.
,
2016
, “
A Review of Carbon Materials and Their Composites With Alloy Metals for Sodium Ion Battery Anodes
,”
Carbon
,
98
, pp.
162
178
.
19.
Li
,
Y.
,
Hu
,
Y. S.
,
Titirici
,
M. M.
,
Chen
,
L.
, and
Huang
,
X.
,
2016
, “
Hard Carbon Microtubes Made From Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries
,”
Adv. Energy Mater.
,
6
(
18
), p.
1600659
.
20.
Yin
,
L.
,
Wang
,
Y.
,
Han
,
C.
,
Kang
,
Y. M.
,
Ma
,
X.
,
Xie
,
H.
, and
Wu
,
M.
,
2016
, “
Self-Assembly of Disordered Hard Carbon/Graphene Hybrid for Sodium-Ion Batteries
,”
J. Power Sources
,
305
, pp.
156
160
.
21.
Xu
,
D.
,
Chen
,
C.
,
Xie
,
J.
,
Zhang
,
B.
,
Miao
,
L.
,
Cai
,
J.
,
Huang
,
Y.
, and
Zhang
,
L.
,
2016
, “
A Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely From Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion Batteries
,”
Adv. Energy Mater.
,
6
(
6
), p.
1501929
.
22.
Teng
,
Y.
,
Mo
,
M.
, and
Lv
,
P.
,
2017
, “
MoS2 Nanosheets Grown on N-Doped Carbon Micro-Tubes Derived From Willow Catkins as a High-Performance Anode Material for Lithium-Ion Batteries
,”
Mater. Lett.
,
209
, pp.
396
399
.
23.
Li
,
Y.
,
Wang
,
G.
,
Wei
,
T.
,
Fan
,
Z.
, and
Yan
,
P.
,
2016
, “
Nitrogen and Sulfur Co-Doped Porous Carbon Nanosheets Derived From Willow Catkin for Supercapacitors
,”
Nano Energy
,
19
, pp.
165
175
.
24.
Teng
,
Y.
,
Zhao
,
H.
,
Zhang
,
Z.
,
Zhao
,
L.
,
Zhang
,
Y.
,
Li
,
Z.
,
Xia
,
Q.
,
Du
,
Z.
, and
Świerczek
,
K.
,
2017
, “
MoS2 Nanosheets Vertically Grown on Reduced Graphene Oxide Via Oxygen Bonds With Carbon Coating as Ultrafast Sodium Ion Batteries Anodes
,”
Carbon
,
119
, pp.
91
100
.
25.
Wang
,
Z.
,
Qie
,
L.
,
Yuan
,
L.
,
Zhang
,
W.
,
Hu
,
X.
, and
Huang
,
Y.
,
2013
, “
Functionalized N-Doped Interconnected Carbon Nanofibers as an Anode Material for Sodium-Ion Storage With Excellent Performance
,”
Carbon
,
55
, pp.
328
334
.
26.
Gu
,
X.
,
Yue
,
J.
,
Chen
,
L.
,
Liu
,
S.
,
Xu
,
H.
,
Yang
,
J.
,
Qian
,
Y.
, and
Zhao
,
X.
,
2015
, “
Coaxial MnO/N-Doped Carbon Nanorods for Advanced Lithium-Ion Battery Anodes
,”
J. Mater. Chem. A
,
3
(
3
), pp.
1037
1041
.
27.
Yang
,
J.
,
Zhou
,
X.
,
Wu
,
D.
,
Zhao
,
X.
, and
Zhou
,
Z.
,
2017
, “
S-Doped N-Rich Carbon Nanosheets With Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries
,”
Adv. Mater.
,
29
, p.
1604108
.
28.
Qie
,
L.
,
Chen
,
W. M.
,
Wang
,
Z. H.
,
Shao
,
Q. G.
,
Li
,
X.
,
Yuan
,
L. X.
,
Hu
,
X. L.
,
Zhang
,
W. X.
, and
Huang
,
Y. H.
,
2012
, “
Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries With a Superhigh Capacity and Rate Capability
,”
Adv. Mater.
,
24
(
15
), pp.
2047
2050
.
29.
Wenzel
,
S.
,
Hara
,
T.
,
Janek
,
J.
, and
Adelhelm
,
P.
,
2011
, “
Room-Temperature Sodium-Ion Batteries: Improving the Rate Capability of Carbon Anode Materials by Templating Strategies
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3342
3345
.
30.
Li
,
W.
,
Zeng
,
L.
,
Yang
,
Z.
,
Gu
,
L.
,
Wang
,
J.
,
Liu
,
X.
,
Cheng
,
J.
, and
Yu
,
Y.
,
2014
, “
Free-Standing and Binder-Free Sodium-Ion Electrodes With Ultralong Cycle Life and High Rate Performance Based on Porous Carbon Nanofibers
,”
Nanoscale
,
6
(2), pp. 693–698.
31.
Tang
,
K.
,
Fu
,
L.
,
White
,
R. J.
,
Yu
,
L.
,
Titirici
,
M. M.
,
Antonietti
,
M.
, and
Maier
,
J.
,
2012
, “
Hollow Carbon Nanospheres With Superior Rate Capability for Sodium-Based Batteries
,”
Adv. Energy Mater.
,
2
(
7
), pp.
873
877
.
32.
Ding
,
J.
,
Wang
,
H. L.
,
Li
,
Z.
,
Kohandehghan
,
A.
,
Cui
,
K.
,
Xu
,
Z. W.
,
Zahiri
,
B.
,
Tan
,
X. H.
,
Lotfabad
,
E. M.
,
Olsen
,
B. C.
, and
Mitlin
,
D.
,
2013
, “
Carbon Nanosheet Frameworks Derived From Peat Moss as High Performance Sodium Ion Battery Anodes
,”
ACS Nano
,
7
(
12
), p.
11004
.
You do not currently have access to this content.