This work defines and implements a technique to predict water activity in proton exchange membrane fuel cell. This technique is based on the electrochemical impedance spectroscopy (EIS) as sensor and adaptive neuro-fuzzy inference system (ANFIS) as estimator. For this purpose, a proton exchange membrane fuel cell (PEMFC) model has been proposed to study the performances of the fuel cell for different operating conditions where the simulation model for water activity behavior is in the proposed structure. The technique based on ANFIS predicts the PEM fuel cell relative humidity (RH) from the EIS. For creation of ANFIS training and checking database, a new method based on factorial design of experimental is used. To check the proposed technique, the ANFIS estimator will be compared with the output humidity relative observation.

References

References
1.
Bıyıkoğlu
,
A.
,
2005
, “
Review of Proton Exchange Membrane Fuel Cell Models
,”
Int. J. Hydrogen Energy
,
30
(
11
), pp.
1181
1212
.
2.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper, M. A. I.
,
Jensen, H. M.
,
Peppley, B. A.
, and
Roberge, P. R.
,
2000
, “
Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
86
(
1–2
), pp.
173
180
.
3.
Watanabe
,
M.
,
1992
, “
Structure of Electrochemical Cell for Wetting Diaphragm of Solid Polymer Electrolyte
,” European Patent No. 0499593Al.
4.
Gu
,
W.
,
Fly
,
G. F.
, and
Mathias
,
M. F.
,
2005
, “
Capillary Layer on Flow field for Water Management in PEM Fuel Cell
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No.
2005181264A1
.https://patents.google.com/patent/US20050181264
5.
Vanderborgh
,
N. E.
, and
Hadstrom
,
J. C.
,
1990
, “
Fuel Cell Water Transport
,” U.S. Department of Energy, Washington, DC, U.S. Patent No.
4973530
.https://patents.google.com/patent/US4973530
6.
Amphlett, C.
,
Mann, R. F.
,
Peppley, B. A.
,
Roberge, P. R.
, and
Rodrigues, A.
, 1996, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
61
, pp. 183–188.
7.
Mammar
,
K.
, and
Chaker
,
A.
,
2009
, “
Fuzzy Logic Control of Fuel Cell System for Residential Power Generation
,”
J. Electr. Eng.
,
60
(
6
), pp.
328
334
.https://www.researchgate.net/publication/242573672_Fuzzy_logic_control_of_fuel_cell_system_for_residential_power_generation
8.
Mammar
,
K.
, and
Chaker
,
A.
,
2012
, “
Neural Network-Based Modeling of PEM Fuel Cell and Controller Synthesis of a Stand-Alone System for Residential Application
,”
Int. J. Comput. Sci.
,
9
(6), pp.
1694
0814
.https://pdfs.semanticscholar.org/71a5/1b02a3e4186d863e6a140c9e98072cc4314f.pdf
9.
Springer, T. E.
,
Zawodzinski, T. A.
, and
Gottesfeld, S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(8), pp. 2334–2342.
10.
Boulon
,
L.
,
Agbossou
,
K.
,
Hissel
,
D.
,
Hernandez
,
A.
,
Bouscayrol
,
A.
,
Sicard
,
P.
, and
Péra
,
M.-C.
,
2010
, “
Energy Management of a Fuel Cell System: Influence of the Air Supply Control on the Water Issues
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Bari, Italy, July 4–7.
11.
Murugesan
,
K.
, and
Senniappan
,
V.
,
2013
, “
Investigation of Water Management Dynamics on the Performance of a Ballard-Mark-V Proton Exchange Membrane Fuel Cell Stack System
,”
Int. J. Electrochem. Sci.
,
8
, pp.
7885
7904
http://www.electrochemsci.org/papers/vol8/80607885.pdf.
12.
Boulon
,
L.
,
Pera
,
M.-C.
,
Delarue
,
P.
,
Bouscayrol
,
A.
, and
Hissel
,
D.
,
2010
, “
Causal Fuel Cell System Model Suitable for Transportation Simulation Applications
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
1
), p. 011010.
13.
Laribi
,
S.
,
Mammar
,
K.
,
Hamouda, M.
, and
Sahliet, Y.
,
2016
, “
Impedance Model for Diagnosis of Water Management in Fuel Cells Using Artificial Neural Networks Methodology
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
17093
17101
.
14.
Fouquet
,
N.
,
Doulet
,
C.
,
Nouillant
,
C.
,
Dauphin-Tanguy
,
G.
, and
Ould-Bouamama
,
B.
,
2006
, “
Model Based PEM Fuel Cell State-of-Health Monitoring Via AC Impedance Measurements
,”
J. Power Sources
,
159
(
2
), pp.
905
913
.
15.
Mammar
,
K.
, and
Bouamama
,
B. O.
,
2013
, “
Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Fells Using Factorial Design of (DoE) Methodology
,”
ASME
Paper No. IMECE2013-63475.
16.
Rezazadeh
,
S.
,
Mehrabi
,
M.
,
Pashaee
,
T.
, and
Mirzaee
,
I.
,
2012
, “
Using Adaptive Neuro-Fuzzy Inference System (ANFIS) for Proton Exchange Membrane Fuel Cell (PEMFC) Performance Modeling
,”
J. Mech. Sci. Technol.
,
26
(
11
), pp.
3701
3709
.
17.
Jang
,
J.-S. R.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference Systems
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
3
), pp.
665
685
.
You do not currently have access to this content.