Code stability is a matter of concern for three-dimensional (3D) fuel cell models operating both at high current density and at high cell voltage. An idealized mathematical model of a fuel cell should converge for all potentiostatic or galvanostatic boundary conditions ranging from open circuit to closed circuit. Many fail to do so, due to (i) fuel or oxygen starvation causing divergence as local partial pressures and mass fractions of fuel or oxidant fall to near zero and (ii) nonlinearities in the Nernst and Butler–Volmer equations near open-circuit conditions. This paper describes in detail, specific numerical methods used to improve the stability of a previously existing fuel cell performance calculation procedure, at both low and high current densities. Four specific techniques are identified. A straight channel operating as a (i) solid oxide and (ii) polymer electrolyte membrane fuel cell is used to illustrate the efficacy of the modifications.

References

References
1.
Bıyıkoğlu
,
A.
,
2005
, “
Review of Proton Exchange Membrane Fuel Cell Models
,”
Int. J. Hydrogen Energy
,
30
(
11
), pp.
1181
1212
.
2.
Siegel
,
C.
,
2008
, “
Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells
,”
Energy
,
33
(
9
), pp.
1331
1352
.
3.
Weber
,
A. Z.
,
Borup
,
R. L.
,
Darling
,
R. M.
,
Das
,
P. K.
,
Dursch
,
T. J.
,
Gu
,
W.
,
Harvey
,
D.
,
Kusoglu
,
A.
,
Litster
,
S.
,
Mench
,
M. M.
,
Mukundan
,
R.
,
Owejan
,
J. P.
,
Pharoah
,
J. G.
,
Secanell
,
M.
, and
Zenyuk
,
I. V.
,
2014
, “
A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1254
F1299
.
4.
Andersson
,
M.
,
Beale
,
S.
,
Espinoza
,
M.
,
Wu
,
Z.
, and
Lehnert
,
W.
,
2016
, “
A Review of Cell-Scale Multiphase Flow Modeling, Including Water Management, in Polymer Electrolyte Fuel Cells
,”
Appl. Energy
,
180
, pp.
757
778
.
5.
Kakaç
,
S.
,
Pramuanjaroenkij
,
A.
, and
Zhou
,
X. Y.
,
2007
, “
A Review of Numerical Modeling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
32
(
7
), pp.
761
786
.
6.
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2010
, “
Review on Modeling Development for Multiscale Chemical Reactions Coupled Transport Phenomena in Solid Oxide Fuel Cells
,”
Appl. Energy
,
87
(
5
), pp.
1461
1476
.
7.
Beale
,
S. B.
,
Choi
,
H.-W.
,
Pharoah
,
J. G.
,
Roth
,
H. K.
,
Jasak
,
H.
, and
Jeon
,
D. H.
,
2016
, “
Open-Source Computational Model of a Solid Oxide Fuel Cell
,”
Comput. Phys. Commun.
,
200
, pp.
15
26
.
8.
Le
,
A. D.
,
Beale
,
S. B.
, and
Pharoah
,
J. G.
,
2015
, “
Validation of a Solid Oxide Fuel Cell Model on the International Energy Agency Benchmark Case With Hydrogen Fuel
,”
Fuel Cells
,
15
(
1
), pp.
27
41
.
9.
Keuler
,
S.
,
2013
, “
Generisches, OpenFOAM-basiertes Brennstoffzellenmodell angewandt auf die Hochtemperatur-Polymerelektrolyt-Brennstoffzelle
,” M.Sc. thesis, Fachhochschule Aachen, Jülich, Germany.
10.
Cao
,
Q.
,
2017
, “
Modelling of High Temperature Polymer Electrolyte Fuel Cells
,” Ph.D. thesis, RWTH Aachen University, Aachen, Germany.
11.
Beale
,
S. B.
,
Lin
,
Y.
,
Zhubrin
,
S. V.
, and
Dong
,
W.
,
2003
, “
Computer Methods for Performance Prediction in Fuel Cells
,”
J. Power Sources
,
118
(
1–2
), pp.
79
85
.
12.
Froning
,
D.
,
Blum
,
L.
,
Gubner
,
A.
,
de Haart
,
L.
,
Spiller
,
M.
, and
Stolten
,
D.
,
2007
, “
Experiences With a CFD Based Two Stage SOFC Stack Modeling Concept and Its Application
,”
ECS Trans.
,
7
(
1
), pp.
1831
1840
.
13.
Kvesić
,
M.
,
Reimer
,
U.
,
Froning
,
D.
,
Lüke
,
L.
,
Lehnert
,
W.
, and
Stolten
,
D.
,
2012
, “
3D Modeling of a 200 cm2 HT-PEFC Short Stack
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2430
2439
.
14.
Lin
,
Y.
, and
Beale
,
S. B.
,
2005
, “
Numerical Predictions of Transport Phenomena in a Proton Exchange Membrane Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
4
), pp.
213
218
.
15.
Schwarz
,
D. H.
, and
Beale
,
S. B.
,
2009
, “
Calculations of Transport Phenomena and Reaction Distribution in a Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
4074
4081
.
16.
Beale
,
S. B.
,
Roth
,
H. K.
,
Le
,
A.
, and
Jeon
,
D. H.
,
2013
, “
Development of an Open Source Software Library for Solid Oxide Fuel Cells
,” National Research Council, Ottawa, ON, Canada, Report No.
PET-1607-12
.https://nparc.nrc-cnrc.gc.ca/eng/view/object/?id=ab243f2e-c463-4926-b007-486c56cafdd5
17.
Beale
,
S.
,
Le
,
A. D.
,
Roth
,
H.
,
Pharoah
,
J.
,
Choi
,
H.-W.
,
De Haart
,
L.
, and
Froning
,
D.
,
2011
, “
Numerical and Experimental Analysis of a Solid Oxide Fuel Cell Stack
,”
ECS Trans.
,
35
(
1
), pp.
935
943
.
18.
Nishida
,
R.
,
Beale
,
S.
,
Pharoah
,
J.
,
de Haart
,
L.
, and
Blum
,
L.
,
2018
, “
Three-Dimensional Computational Fluid Dynamics Modelling and Experimental Validation of the Jülich Mark-F Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
373
, pp.
203
210
.
19.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
20.
Leonide
,
A.
,
Apel
,
Y.
, and
Ivers-Tiffee
,
E.
,
2009
, “
SOFC Modeling and Parameter Identification by Means of Impedance Spectroscopy
,”
ECS Trans.
,
19
(
20
), pp.
81
109
.
21.
Beale
,
S. B.
,
2004
, “
Calculation Procedure for Mass Transfer in Fuel Cells
,”
J. Power Sources
,
128
(
2
), pp.
185
192
.
22.
Beale
,
S. B.
,
2015
, “
Mass Transfer Formulation for Polymer Electrolyte Membrane Fuel Cell Cathode
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
11641
11650
.
23.
Spalding
,
D. B.
,
1960
, “
A Standard Formulation of the Steady Convective Mass Transfer Problem
,”
Int. J. Heat Mass Transfer
,
1
(
2–3
), pp.
192
207
.
24.
Spalding
,
D. B.
,
1963
,
Convective Mass Transfer: An Introduction
,
Edward Arnold
,
London, UK
.
25.
Knights
,
S. D.
,
Colbow
,
K. M.
,
St-Pierre
,
J.
, and
Wilkinson
,
D. P.
,
2004
, “
Aging Mechanisms and Lifetime of PEFC and DMFC
,”
J. Power Sources
,
127
(
1–2
), pp.
127
134
.
26.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
27.
Beale
,
S. B.
,
2005
, “
Mass Transfer in Plane and Square Ducts
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3256
3260
.
28.
Fraser
,
S.
, and
Hacker
,
V.
,
2008
, “
An Empirical Fuel Cell Polarization Curve Fitting Equation for Small Current Densities and No-Load Operation
,”
J. Appl. Electrochem.
,
38
(
4
), pp.
451
456
.
29.
Reimer
,
U.
,
Schumacher
,
B.
, and
Lehnert
,
W.
,
2015
, “
Accelerated Degradation of High-Temperature Polymer Electrolyte Fuel Cells: Discussion and Empirical Modeling
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
F153
F164
.
30.
Hamann
,
H.
, and
Vielstich
,
W.
,
1981
,
Elektrochemie II–Elektrodenprozesse, Angewandte Elektrochemie
,
Verlag Chemie
,
Weinheim, Germany
.
31.
Probstein
,
R. F.
,
1989
,
Physicochemical Hydrodynamics: An Introduction
,
Butterworths
,
Boston, MA
.
32.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques
,”
Comput. Phys.
,
12
(6), pp. 620–631.
33.
Roache
,
P. J.
,
1998
,
Fundamentals of Computational Fluid Dynamics
,
Hermosa
, Socorro, NM.
You do not currently have access to this content.