A method which allows for the comparison of polymer electrolyte fuel cell (PEFC) bipolar plates (BPs) with various channel dimensions is outlined here. It is applied to data from an experiment with different channel and land width and channel depth combinations for interdigitated and parallel designs. Channel and land width and channel depth varied from 0.25 mm to 1 mm on six different BP designs, and two stoichiometries were tested. Each condition was performed three times for repeatability. The method calculates the performance of each condition after accounting for reversible voltage and overpotential changes due to varying pressure and after eliminating ohmic resistance as a variable. In these data, the interdigitated flow field outperformed the parallel flow field. Designs are compared using the BP permeability as a benchmark metric. The method then calculates the area-specific ohmic resistance (ASR) of the cell. It was difficult to draw hard conclusions about changes in the ASR between flow field designs, but there may be more consistent liquid water removal from the gas diffusion layer (GDL) with smaller channel dimensions. It was found that concentration losses seem to be primarily a result of channel width, rather than channel depth.

References

References
1.
He
,
W.
,
Yi
,
J. S.
, and
Van Nguyen
,
T.
,
2000
, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
,
46
(
10
), pp.
2053
2064
.
2.
Nguyen
,
T. V.
,
1996
, “
A Gas Distributor Design for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
143
(
5
), pp.
L103
L105
.
3.
Arato
,
E.
,
Pinna
,
M.
, and
Costa
,
P.
,
2006
, “
Gas-Phase Mass-Transfer Resistance at PEMFC Electrodes: Part 2. Effects of the Flow Geometry and the Related Pressure Field
,”
J. Power Sources
,
158
(
1
), pp.
206
212
.
4.
Jiao
,
K.
,
Park
,
J.
, and
Li
,
X.
,
2010
, “
Experimental Investigations on Liquid Water Removal From the Gas Diffusion Layer by Reactant Flow in a PEM Fuel Cell
,”
Appl. Energy
,
87
(
9
), pp.
2770
2777
.
5.
Wang
,
X.-D.
,
Duan
,
Y.-Y.
, and
Yan
,
W.-M.
,
2007
, “
Numerical Study of Cell Performance and Local Transport Phenomena in PEM Fuel Cells With Various Flow Channel Area Ratios
,”
J. Power Sources
,
172
(
1
), pp.
265
277
.
6.
Wang
,
X.-D.
,
Duan
,
Y.-Y.
,
Yan
,
W.-M.
, and
Peng
,
X.-F.
,
2008
, “
Effects of Flow Channel Geometry on Cell Performance for PEM Fuel Cells With Parallel and Interdigitated Flow Fields
,”
Electrochim. Acta.
,
53
(
16
), pp.
5334
5343
.
7.
Scholta
,
J.
,
Escher
,
G.
,
Zhang
,
W.
,
Küppers
,
L.
,
Jörissen
,
L.
, and
Lehnert
,
W.
,
2006
, “
Investigation on the Influence of Channel Geometries on PEMFC Performance
,”
J. Power Sources
,
155
(
1
), pp.
66
71
.
8.
Kim
,
A. R.
,
Jung
,
H. M.
, and
Um
,
S.
,
2014
, “
An Engineering Approach to Optimal Metallic Bipolar Plate Designs Reflecting Gas Diffusion Layer Compression Effects
,”
Energy
,
66
, pp.
50
55
.
9.
Chen
,
K. S.
,
2007
, “
Predicting Water-Droplet Detachment From GDL/Channel Interfaces in PEM Fuel Cells
,”
ECS Trans.
,
11
(1), pp.
715
724
.
10.
Zhu
,
X.
,
Sui
,
P. C.
, and
Djilali
,
N.
,
2007
, “
Dynamic Behaviour of Liquid Water Emerging From a GDL Pore Into a PEMFC Gas Flow Channel
,”
J. Power Sources
,
172
(
1
), pp.
287
295
.
11.
Yoon
,
Y.
,
Lee
,
W.
,
Park
,
G.
,
Yang
,
T.
, and
Kim
,
C.
,
2005
, “
Effects of Channel and Rib Widths of Flow Field Plates on the Performance of a PEMFC
,”
Int. J. Hydrogen Energy
,
30
(
12
), pp.
1363
1366
.
12.
Akhtar
,
N.
,
Qureshi
,
A.
,
Scholta
,
J.
,
Hartnig
,
C.
,
Messerschmidt
,
M.
, and
Lehnert
,
W.
,
2009
, “
Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes
,”
Int. J. Hydrogen Energy
,
34
(
7
), pp.
3104
3111
.
13.
Cha
,
S.-W.
,
O'Hayre
,
R.
,
Lee
,
S. J.
,
Saito
,
Y.
, and
Prinz
,
F. B.
,
2004
, “
Geometric Scale Effect of Flow Channels on Performance of Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
11
), p.
A1856
.
14.
Grujicic
,
M.
,
Zhao
,
C. L.
,
Chittajallu
,
K. M.
, and
Ochterbeck
,
J. M.
,
2004
, “
Cathode and Interdigitated Air Distributor Geometry Optimization in Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Mater. Sci. Eng. B
,
108
(
3
), pp.
241
252
.
15.
Chiu
,
H.-C.
,
Jang
,
J.-H.
,
Yan
,
W.-M.
,
Li
,
H.-Y.
, and
Liao
,
C.-C.
,
2012
, “
A Three-Dimensional Modeling of Transport Phenomena of Proton Exchange Membrane Fuel Cells With Various Flow Fields
,”
Appl. Energy
,
96
, pp.
359
370
.
16.
Santamaria
,
A. D.
,
Cooper
,
N. J.
,
Becton
,
M. K.
, and
Park
,
J. W.
,
2013
, “
Effect of Channel Length on Interdigitated Flow-Field PEMFC Performance: A Computational and Experimental Study
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16253
16263
.
17.
Cooper
,
N. J.
,
Smith
,
T.
,
Santamaria
,
A. D.
, and
Park
,
J. W.
,
2015
, “
Experimental Optimization of Parallel and Interdigitated PEMFC Flow-Field Channel Geometry
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp. 1213–1223.
18.
Chippar
,
P.
,
Kyeongmin
,
O.
,
Kang
,
K.
, and
Ju
,
H.
,
2012
, “
A Numerical Investigation of the Effects of GDL Compression and Intrusion in Polymer Electrolyte Fuel Cells (PEFCs)
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6326
6338
.
19.
Mahabunphachai
,
S.
,
Cora
,
Ö. N.
, and
Koç
,
M.
,
2010
, “
Effect of Manufacturing Processes on Formability and Surface Topography of Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates
,”
J. Power Sources
,
195
(
16
), pp.
5269
5277
.
20.
Smith
,
T. L.
,
Santamaria
,
A. D.
,
Park
,
J. W.
, and
Yamazaki
,
K.
,
2014
, “
Alloy Selection and Die Design for Stamped Proton Exchange Membrane Fuel Cell (PEMFC) Bipolar Plates
,”
Procedia CIRP
,
14
, pp.
275
280
.
21.
Hontañón
,
E.
,
Escudero
,
M. J.
,
Bautista
,
C.
,
Garcia-Ybarra
,
P. L.
, and
Daza
,
L.
,
2000
, “
Optimisation of Flow-Field in Polymer Electrolye Membrane Fuel Cells Using Computational Fluid Dynamics Techniques
,”
J. Power Sources
,
86
(
1–2
), pp.
363
368
.
22.
Wang
,
Y.
,
Basu
,
S.
, and
Wang
,
C.-Y.
,
2008
, “
Modeling Two-Phase Flow in PEM Fuel Cell Channels
,”
J. Power Sources
,
179
(
2
), pp.
603
617
.
23.
Cooper
,
N. J.
,
Santamaria
,
A. D.
,
Becton
,
M. K.
, and
Wan
,
J.
,
2017
, “
Investigation of the Performance Improvement in Decreasing Aspect Ratio Interdigitated Flow Field PEMFCs
,”
Energy Convers. Manage.
,
136
, pp.
307
317
.
24.
Kim
,
J.
,
Chamberlin
,
C.
,
Lee
,
S.
, and
Srinivasan
,
S.
,
1995
, “
Modeling of Proton Exchange Membrane Fuel Cell Performance With an Empirical Equation Modeling of Proton Exchange. Membrane Fuel Cell Performance With an Empirical Equation
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2670
2674
.
25.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), p.
2477
.
You do not currently have access to this content.