Proton exchange membrane (PEM) fuel cells suffer noticeable power loss when operated at high power output. This paper proposes a hybridization scheme for a PEM fuel cell/supercapacitor system operating in three different regimes: “Flat,” “Uphill,” and “Downhill.” Transitions among operational regimes are governed by logical statements, which compare operational parameters against threshold values. These threshold values were obtained using a genetic optimization (GO) algorithm. The hybridization problem is analyzed in a simulation environment before the solution is implemented in an actual laboratory prototype. Results and discussion are presented to demonstrate the soundness of the proposed solution. The approach presented in this paper is suitable for applications where sudden changes in power demand occur.

References

References
1.
Zhao
,
H.
, and
Burke
,
A.
,
2009
, “
Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles
,”
J. Power Sources
,
186
(
2
), pp.
408
416
.
2.
Erdinc
,
O.
, and
Uzunoglu
,
M.
,
2010
, “
Recent Trends in PEM Fuel Cell-Powered Hybrid Systems: Investigation of Application Areas, Design Architectures and Energy Management Approaches
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2874
2884
.
3.
Thounthong
,
P.
,
Chunkag
,
V.
,
Sethakul
,
P.
,
Davat
,
B.
, and
Hinaje
,
M.
,
2009
, “
Comparative Study of Fuel-Cell Vehicle Hybridization With Battery or Supercapacitor Storage Device
,”
IEEE Trans. Veh. Technol.
,
58
(
8
), pp.
3892
3904
.
4.
Thounthong
,
P.
,
Raël
,
S.
, and
Davat
,
B.
,
2005
, “
Fuel Cell and Supercapacitors for Automotive Hybrid Electrical System
,”
ECTI Trans. Electr. Eng., Electron., Commun.
,
3
(
1
), pp.
20
30
.
5.
Suh
,
K.
, and
Stefanopoulou
,
A. G.
,
2005
, “
Coordination of Converter and Fuel Cell Controller
,”
Int. J. Energy Res.
,
29
(
12
), pp.
1167
1189
.
6.
Moore
,
R.
,
Hauer
,
K.
,
Ramaswamy
,
S.
, and
Cunningham
,
J.
,
2006
, “
Energy Utilization and Efficiency Analysis for Hydrogen Fuel Cell Vehicles
,”
J. Power Sources
,
159
(
2
), pp.
1214
1230
.
7.
Thounthong
,
P.
,
Raël
,
S.
, and
Davat
,
B.
,
2009
, “
Energy Management of Fuel Cell Battery/Supercapacitor/Hybrid Power Source for Vehicle Applications
,”
J. Power Sources
,
193
(
1
), pp.
376
385
.
8.
Karden
,
E.
,
Ploumen
,
S.
,
Fricke
,
B.
,
Miller
,
T.
, and
Snyder
,
K.
,
2007
, “
Energy Storage Devices for Future Hybrid Electric Vehicles
,”
J. Power Sources
,
168
(
1
), pp.
2
11
.
9.
Rodatz
,
P.
,
Paganelli
,
G.
,
Sciarretta
,
A.
, and
Guzzella
,
L.
,
2005
, “
Optimal Power Management of an Experimental Fuel Cell/Supercapacitor-Powered Hybrid Vehicle
,”
Control Eng. Pract.
,
13
(
1
), pp.
41
53
.
10.
Paganelli
,
G.
,
Ercole
,
G.
,
Brahma
,
A.
, and
Guezennec
,
Y.
,
2001
, “
General Supervisory Control Policy for the Energy Optimization of Charge-Sustaining Hybrid Electric Vehicles
,”
JSAE Rev.
,
22
(
4
), pp.
511
518
.
11.
Paganelli
,
G.
,
Guerra
,
T.
,
Delprat
,
S.
,
Santin
,
J.
,
Combes
,
E.
, and
Delhom
,
M.
,
2000
, “
Simulation and Assessment of Power Control Strategies for a Parallel Hybrid Car
,”
J. Automob. Eng.
,
214
(
7
), pp.
705
718
.
12.
Thounthong
,
P.
,
Raël
,
S.
, and
Davat
,
B.
,
2007
, “
Control Strategy of Fuel Cell and Supercapacitors Association for a Distributed Generation System
,”
IEEE Trans. Ind. Electron.
,
54
(
6
), pp.
3225
3233
.
13.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
, Hoboken, NJ.
14.
Sedghisigarchi
,
K.
, and
Feliachi
,
A.
,
2004
, “
Dynamic and Transient Analysis of Power Distribution Systems With Fuel Cells—Part I: Fuel-Cell Dynamic Model
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
423
428
.
15.
EG & G Services
,
2000
,
Fuel Cell Handbook
,
5th ed.
, Parson Inc. Morgantown, WV.
16.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Fowler
,
M. W.
,
Peppley
,
B. A.
, and
Thurgood
,
C. P.
,
2004
, “Modeling of PEM Fuel Cells,”
Fuel Cells for Automotive Applications
,
ASME Press
,
New York
, pp.
113
134
.
17.
Yalcinoz
,
T.
, and
Alam
,
M. S.
,
2008
, “
Dynamic Modeling and Simulation of Air-Breathing Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
182
(
1
), pp.
168
174
.
18.
Correa
,
J. M.
,
Farret
,
F. A.
,
Popov
,
V. A.
, and
Simoes
,
M. G.
,
2005
, “
Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells
,”
IEEE Trans. Energy Convers.
,
20
(
1
), pp.
211
218
.
19.
O'Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2006
,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
20.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, Jr.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
38
(
8
), pp.
2334
2342
.
21.
Ying
,
W.
,
Sohn
,
Y. J.
,
Lee
,
W. Y.
,
Ke
,
J.
, and
Kim
,
C. S.
,
2005
, “
Three-Dimensional Modeling and Experimental Investigation for an Air-Breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
,
145
(
2
), pp.
563
571
.
22.
Zawodzinski
,
T. A.
,
Neeman
,
M.
,
Sillerud
,
L. O.
, and
Gottesfeld
,
S.
,
1991
, “
Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes
,”
J. Phys. Chem.
,
95
(
15
), pp.
6040
6044
.
23.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
,
2004
,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design
,
Springer
, London.
24.
Spiegel
,
C.
,
2008
,
PEM Fuel Cell Modeling and Simulation Using MATLAB
,
Elsevier
, Burlington, MA.
25.
Mills
,
A. F.
,
1999
, “
Mass Convection
,”
Basic Heat & Mass Transfer
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
777
792
.
26.
Li
,
P. W.
,
Zhang
,
T.
,
Wang
,
Q. M.
,
Schaefer
,
L.
, and
Chyu
,
M. K.
,
2003
, “
The Performance of PEM Fuel Cells Fed With Oxygen Through the Free Convection Mode
,”
J. Power Sources
,
114
(
1
), pp.
63
69
.
You do not currently have access to this content.