Cell temperature uniformity inside most batteries is important, because temperature variation leads to cell resistance variation and thus cell voltage variation during discharge–charge cycling. Voltage variation among the cells leads to accelerated degradation of the overall battery. Goal of this work was to improve cell temperature uniformity of the General Electric DurathonTM E620 battery module (600 V class, 20 kWh, 280 °C nominal temperature), which uses the sodium metal halide chemistry and convection air cooling. Computation fluid dynamics (CFD) study and bench-top testing were used to evaluate multiple battery design options. The optimized battery design was prototyped and tested, which demonstrated 3.5× increase in cooling power and 30% reduction in cell temperature difference during discharge–charge cycling. Cell temperature difference during battery float was reduced 50%. The hardware design changes were implemented into production batteries, which showed 450% improvement in reliability performance during discharge–charge cycling.

References

References
1.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(9), pp.
4454
4571
.https://www.deepdyve.com/lp/elsevier/a-review-of-power-battery-thermal-energy-management-iY0f0i7o9u
2.
Sudworth, J. L.
,
2006
, “
The Sodium Nickel Chloride ‘Zebra’ Battery
,”
J. Power Sources
,
100
(2001), pp. 149–163.
3.
Bratsch
,
S. G.
,
1989
, “
Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K
,”
J. Phys. Chem. Ref. Data
,
18
(
1
), pp. 1–21.
4.
Frutschy
,
K.
,
Chatwin
,
T.
, and
Bull
,
R.
,
2015
, “
Cell Overcharge Testing Inside Sodium Metal Halide Battery
,”
J. Power Sources
,
291
, pp.
117
125
.
5.
Frutschy
,
K. J.
,
Lindsey
,
J.
,
Zanoni
,
M.
, and
Mao
,
L.
,
2013
, “
Modular Battery
,” General Electric Co., Boston, MA, U.S. Patent No.
US20130288096A1
.https://patents.google.com/patent/US20130288096
6.
Liaw
,
B. Y.
,
Bethune
,
K. P.
, and
Yang
,
X. G.
,
2002
, “
Advanced Integrated Battery Testing and Simulation
,”
J. Power Sources
,
110
(2), pp.
330
340
.
7.
Frutschy
,
K. J.
,
Lindsey
,
J. S.
Bhamidipati
,
K. L.
, and
Browell
,
J. T.
,
2017
, “
Energy Storage Device With Reduced Temperature Variability Between Cells
,” U.S. Patent No. 9,806,387.
You do not currently have access to this content.