The design of efficient devices for the photoelectrochemical (PEC) water splitting for solar-to-hydrogen (STH) processes has gained much attention because of the fossil fuels crisis. In PEC water splitting, solar energy is converted to a chemical fuel for storage. From the viewpoint of economics and large-scale application, semiconductor photoelectrodes with high stability and efficiency are required. However, although numerous materials have been discovered, challenges remain for their commercialization. Among the enormous number of investigated materials, layered transition metal dichalcogenide (TMD)-based photoelectrodes show attractive performance in PEC devices owing to their suitable narrow bandgaps, high absorption capacity, and fast carrier transport properties. A comprehensive review of TMDs photoelectrodes for STH processes would help advance research in this expanding research area. This review covers the physicochemical features and latest progress in various layered-structure TMD-based photoelectrodes, especially MoS2, as well as various approaches to improve the PEC performance and stability by coupling with active carbon materials, including graphene, CNTs, and conductive carbon. Finally, we discuss the prospects and potential applications for STH processes. This review paper gives insights into the fundamental concepts and the role of active chemical species during the STH conversion processes and their influence in enhancing PEC water splitting performance.

References

References
1.
Fujishima
,
A.
, and
Honda
,
K.
,
1972
, “
Electrochemical Photolysis of Water at a Semiconductor Electrode
,”
Nature
,
238
(
5358
), pp.
37
38
.
2.
Anpo
,
M.
,
Shima
,
T.
,
Kodama
,
S.
, and
Kubokawa
,
Y.
,
1987
, “
Photocatalytic Hydrogenation of Propyne With Water on Small-Particle Titania: Size Quantization Effects and Reaction Intermediates
,”
J. Phys. Chem.
,
91
(
16
), pp.
4305
4310
.
3.
Wilcoxon
,
J. P.
,
Newcomer
,
P. P.
, and
Samara
,
G. A.
,
1997
, “
Synthesis and Optical Properties of MoS2 and Isomorphous Nanoclusters in the Quantum Confinement Regime
,”
J. Appl. Phys.
,
81
(
12
), pp.
7934
7944
.
4.
Wu
,
W.
,
Jiang
,
C.
, and
Roy
,
V. A. L.
,
2015
, “
Recent Progress in Magnetic Iron Oxide–Semiconductor Composite Nanomaterials as Promising Photocatalysts
,”
Nanoscale
,
7
(
1
), pp.
38
58
.
5.
Chhowalla
,
M.
,
Shin
,
H. S.
,
Eda
,
G.
,
Li
,
L.
,
Loh
,
K. P.
, and
Zhang
,
H.
,
2013
, “
The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets
,”
Nat. Chem.
,
5
(
4
), pp.
263
275
.
6.
Vattikuti
,
S. V. P.
,
Byon
,
C.
, and
Reddy
,
C. V.
,
2015
, “
Synthesis of MoS2 Multi-Wall Nanotubes Using Wet Chemical Method With H2O2 as Growth Promoter
,”
Superlattice Microstruct.
,
85
, pp.
124
132
.
7.
Yang
,
L.
,
Zhou
,
W.
,
Lu
,
J.
,
Hou
,
D.
,
Ke
,
Y.
, and
Li
,
G.
,
2016
, “
Hierarchical Spheres Constructed by Defect-Rich MoS2/Carbon Nano Sheets for Efficient Electrocatalytic Hydrogen Evolution
,”
Nano Energy
,
22
, pp.
490
498
.
8.
Wu
,
J.
,
Liu
,
M.
,
Chatterjee
,
K.
,
Hackenberg
,
K. P.
,
Shen
,
J.
,
Zou
,
X.
,
Yan
,
Y.
,
Gu
,
J.
,
Yang
,
Y.
,
Lou
,
J.
, and
Ajayan
,
P. M.
,
2016
, “
Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium
,”
Adv. Mater. Interfaces
,
3
(
9
), p.
1500669
.
9.
Hong
,
X.
,
Chan
,
K.
,
Tsai
,
C.
, and
Nørskov
,
J. K.
,
2016
, “
How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction
,”
ACS Catal.
,
6
(
7
), pp.
4428
4437
.
10.
Zhang
,
G.
,
Liu
,
H.
,
Qu
,
J.
, and
Hong
,
J.
,
2016
, “
Two-Dimensional Layered MoS2: Rational Design, Properties and Electrochemical Applications
,”
Energy Environ. Sci.
,
9
(
4
), pp.
1190
1209
.
11.
Zhang
,
W.
, and
Huang
,
K.
,
2017
, “
A Review of Recent Progress in Molybdenum Disulfide-Based Supercapacitors and Batteries
,”
Inorg. Chem. Front
,
4
(
10
), pp.
1602
1620
.
12.
Jiang
,
J.
,
2015
, “
Graphene Versus MoS2: A Short Review
,”
Front. Phys.
,
10
(
3
), pp.
287
302
.
13.
Vattikuti
,
S. V. P.
,
Byon
,
C.
,
Reddy
,
C. V.
, and
Ravikumar
,
R.
,
2016
, “
Improved Photocatalytic Activity of MoS2 Nanosheets Decorated With SnO2 Nanoparticles
,”
RSC Adv.
,
5
(
105
), pp.
86675
86684
.
14.
Vattikuti
,
S. V. P.
,
Byon
,
C.
, and
Reddy
,
C. V.
,
2016
, “
ZrO2/MoS2 Heterojunction Photocatalysts for Efficient Photocatalytic Degradation of Methyl Orange
,”
Electron. Mater. Lett.
,
12
(
6
), pp.
812
823
.
15.
Ruban
,
P.
, and
Sellappa
,
K.
,
2016
, “
Concurrent Hydrogen Production and Hydrogen Sulfide Decomposition by Solar Photocatalysis
,”
Clean Soil, Air, Water
,
44
(
8
), pp.
1023
1035
.
16.
He
,
Z.
, and
Que
,
W.
,
2016
, “
Molybdenum Disulfide Nanomaterials: Structures, Properties, Synthesis and Recent Progress on Hydrogen Evolution Reaction
,”
Appl. Mater. Today
,
3
, pp.
23
56
.
17.
Benck
,
J. D.
,
Hellstern
,
T. R.
,
Kibsgaard
,
J.
,
Chakthranont
,
P.
, and
Jaramillo
,
T. F.
,
2014
, “
Catalyzing the Hydrogen Evolution Reaction (HER) With Molybdenum Sulfide Nanomaterials
,”
ACS Catal.
,
4
(
11
), pp.
3957
3971
.
18.
Guo
,
B.
,
Yu
,
K.
,
Li
,
H.
,
Song
,
H.
,
Zhang
,
Y.
,
Lei
,
X.
,
Fu
,
H.
,
Tan
,
Y.
, and
Zhu
,
Z. Q.
,
2016
, “
Hollow Structured Micro/Nano MoS2 Spheres for Highly Electrocatalytic Activity Hydrogen Evolution Reaction
,”
ACS Appl. Mater. Interface
,
8
(
8
), pp.
5517
5525
.
19.
Benson
,
J.
,
Li
,
M.
,
Wang
,
S.
,
Wang
,
P.
, and
Papakonstantinou
,
P.
,
2015
, “
Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots
,”
ACS Appl. Mater. Interfaces
,
7
(
25
), pp.
14113
14122
.
20.
Fan
,
X. L.
,
Yang
,
Y.
,
Xiao
,
P.
, and
Lau
,
W. M.
,
2014
, “
Site-Specific Catalytic Activity in Exfoliated MoS2 Single-Layer Polytypes for Hydrogen Evolution: Basal Plane and Edges
,”
J. Mater. Chem. A
,
2
(
48
), pp.
20545
20551
.
21.
Laursen
,
A. B.
,
Varela
,
A. S.
,
Dionigi
,
F.
,
Fanchiu
,
H.
,
Miller
,
C.
,
Trinhammer
,
O. L.
,
Rossmeisl
,
J.
, and
Dahl
,
S.
,
2012
, “
Electrochemical Hydrogen Evolution: Sabatier's Principle and the Volcano Plot
,”
J. Chem. Educ.
,
89
(
12
), pp.
1595
1599
.
22.
Dai
,
X.
,
Kangli
,
D.
,
Li
,
Z.
,
Liu
,
M.
,
Ma
,
Y.
,
Sun
,
H.
,
Zhang
,
X.
, and
Yang
,
Y.
,
2015
, “
Co–Doped MoS2 Nanosheets With Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution
,”
ACS Appl. Mater. Interfaces
,
7
(
49
), pp.
27242
27253
.
23.
Li
,
Y.
,
Wang
,
J.
,
Tian
,
X.
,
Ma
,
L.
,
Dai
,
C.
,
Yang
,
C.
, and
Zhou
,
Z.
,
2016
, “
Carbon Doped Molybdenum Disulfidenanosheets Stabilized on Graphene for Hydrogen Evolution Reaction With High Electrocatalytic Ability
,”
Nanoscale
,
8
(
3
), pp.
1676
1683
.
24.
Wanga
,
D.
,
Zhang
,
X.
,
Shen
,
Y.
, and
Wu
,
Z.
,
2016
, “
Ni-Doped MoS2 Nanoparticles as Highly Active Hydrogen Evolution Electrocatalysts
,”
RSC Adv.
,
6
(
20
), pp.
16656
16661
.
25.
Lai
,
F.
,
Miao
,
Y. E.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Liu
,
T.
,
2016
, “
Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived From Bacterial Cellulose for Highefficiency Electrocatalytic Hydrogen Evolution Reaction
,”
ACS Appl. Mater. Interface
,
8
, pp.
3558
3566
.
26.
Guo
,
Y.
,
Zhang
,
X.
,
Zhang
,
X.
, and
You
,
T.
,
2015
, “
Defect- and S-Rich Ultrathin MoS2 Nanosheets Embedded in N Doped Carbon Nanofibers for Efficient Hydrogen Evolution
,”
J. Mater. Chem. A
,
3
(
31
), pp.
15927
15934
.
27.
Pu
,
Z.
,
Wei
,
S.
,
Chen
,
Z.
, and
Mu
,
S.
,
2016
, “
3D Flexible Hydrogen Evolution Electrodes With Se Promoted Molybdenum Sulfide Nanosheets Arrays
,”
RSC Adv.
,
6
(
14
), pp.
11077
11080
.
28.
Li
,
J.
,
Liu
,
E.
,
Ma
,
Y.
,
Hu
,
X.
,
Wan
,
J.
,
Sun
,
L.
, and
Fan
,
J.
,
2016
, “
Synthesis of MoS2/g-C3N4 Nanosheets as 2D Heterojunction Photocatalysts With Enhanced Visible Light Activity
,”
Appl. Surf. Sci.
,
364
, pp.
694
702
.
29.
Chen
,
Z.
,
Cummins
,
D.
,
Reinecke
,
B. N.
,
Clark
,
E.
,
Sunkara
,
M. K.
, and
Jaramillo
,
T. F.
,
2011
, “
Core Shell MoO3–MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials
,”
Nano Lett.
,
11
(
10
), pp.
4168
4175
.
30.
Gu
,
H.
,
Zhang
,
L.
,
Huang
,
Y.
,
Zhang
,
Y.
,
Fan
,
W.
, and
Liu
,
T.
,
2016
, “
Quasi-One-Dimensional Graphene Nanoribbons Supported MoS2 Nanosheets for Enhanced Hydrogen Evolution Reaction
,”
RSC Adv.
,
6
(
17
), pp.
13757
13765
.
31.
Xu
,
X.
,
Lei
,
Z.
, and
Wu
,
P.
,
2015
, “
Facile Preparation of 3D MoS2/MoSe2 Nanosheets-Graphene Networks as Efficient Electrocatalysts for Hydrogen Evolution Reaction
,”
J. Mater. Chem. A
,
3
(
31
), pp.
16337
16347
.
32.
Li
,
F.
,
Li
,
J.
,
Lin
,
X.
,
Li
,
X.
,
Fang
,
Y.
,
Jiao
,
L.
,
An
,
X.
,
Fu
,
Y.
,
Jin
,
J.
, and
Li
,
R.
,
2015
, “
Designed Synthesis of Multi-Walled Carbon Nanotubes@Cu@MoS2 Hybrid as Advanced Electrocatalyst for Highly Efficient Hydrogen Evolution Reaction
,”
J. Power Sources
,
300
, pp.
301
308
.
33.
Kadam
,
S. R.
,
Late
,
D. J.
,
Panmand
,
R. P.
,
Kulkarni
,
M. V.
,
Nikam
,
L. K.
,
Gosavi
,
S. W.
,
Park
,
C. J.
, and
Kale
,
K. B.
,
2015
, “
Nanostructured 2D MoS2 Honeycomb and Hierarchical 3D Marigold Nanoflower of CdMoS4 for Hydrogen Production Under Solar Light
,”
J. Mater. Chem. A
,
3
(
42
), pp.
21233
21243
.
34.
Kang
,
Y.
,
Gong
,
Y.
,
Zhijian
,
H.
,
Ziwei
,
L.
,
Qiu
,
Z.
,
Zhu
,
X.
,
Ajayan
,
P. M.
, and
Fangl
,
Z.
,
2015
, “
Plasmonic Hot Electrons Enhanced MoS2 Photocatalysis in Hydrogen Evolution
,”
Nanoscale.
,
7
(
10
), pp.
4482
4488
.
You do not currently have access to this content.