To investigate the efficiency of dodecafluoro-2-methylpentan-3-one (C6F-ketone) extinguishing agent on suppressing the lithium titanate battery fire, an experimental system was devised to implement suppression test. One 5 kW electric heater was placed at the bottom of the battery to cause the thermal runaway. The extinguishing agents of CO2 and C6F-ketone with different pressures were performed to suppress lithium ion battery (LIB) fire. The temperatures of the battery and the flame, the ignition time, the release time of the agent, the release pressure of the agent, the time to extinguish the fire, the battery mass loss, and the mass of used agent were obtained and compared in different aspects. The experimental results reveal that the lithium titanate battery fire can be suppressed by C6F-ketone within 30 s; the results further show that CO2 is incapable of fully extinguishing the flame over the full duration of the test carried out. Therefore, C6F-ketone extinguishing agent is a good candidate to put down the LIB fire.

References

References
1.
Wang
,
Z.
, and
Zhou
,
L.
,
2012
, “
Metal Oxide Hollow Nanostructures for Lithium-Ion Batteries
,”
Adv. Mater.
,
24
(
14
), pp.
1903
1911
.
2.
Kim
,
G.-H.
,
Smith
,
K.
,
Ireland
,
J.
, and
Pesaran
,
A.
,
2012
, “
Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems
,”
J. Power Sources
,
210
, pp.
243
253
.
3.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
, pp.
503
516
.
4.
Nakayama
,
M.
,
Iizuka
,
K.
,
Shiiba
,
H.
,
Baba
,
S.
, and
Nogami
,
M.
,
2011
, “
Asymmetry in Anodic and Cathodic Polarization Profile for LiFePO4 Positive Electrode in Rechargeable Li Ion Battery
,”
J. Ceram. Soc. Jpn.
,
119
(
1393
), pp.
692
696
.
5.
Röder
,
P.
,
Baba
,
N.
,
Friedrich
,
K. A.
, and
Wiemhöfer
,
H. D.
,
2013
, “
Impact of Delithiated Li0FePO4 on the Decomposition of LiPF6-Based Electrolyte Studied by Accelerating Rate Calorimetry
,”
J. Power Sources
,
236
, pp.
151
157
.
6.
Wakao
,
T.
,
Gunji
,
T.
,
Jeevagan
,
A. J.
,
Mochizuki
,
Y.
,
Kaneko
,
S.
,
Baba
,
K.
,
Watanabe
,
M.
,
Kanda
,
Y.
,
Murakami
,
K.
,
Omura
,
M.
,
Kobayashi
,
G.
, and
Matsumoto
,
F.
,
2014
, “
Stable Charge/Discharge Cycle Performance of a LiFePO4 Cathode Prepared With a Carboxymethyl Cellulose Binder
,”
ECS Trans.
,
58
(
25
), pp.
19
25
.
7.
Capasso
,
C.
, and
Veneri
,
O.
,
2014
, “
Experimental Analysis on the Performance of Lithium Based Batteries for Road Full Electric and Hybrid Vehicles
,”
Appl. Energy
,
136
, pp.
921
930
.
8.
Lamb
,
J.
,
Orendorff
,
C. J.
,
Steele
,
L. A. M.
, and
Spangler
,
S. W.
,
2015
, “
Failure Propagation in Multi-Cell Lithium Ion Batteries
,”
J. Power Sources
,
283
, pp.
517
523
.
9.
Omar
,
N.
,
Monem
,
M. A.
,
Firouz
,
Y.
,
Salminen
,
J.
,
Smekens
,
J.
,
Hegazy
,
O.
,
Gaulous
,
H.
,
Mulder
,
G.
,
Van den Bossche
,
P.
, and
Coosemans
,
T.
,
2014
, “
Lithium Iron Phosphate Based Battery–Assessment of the Aging Parameters and Development of Cycle Life Model
,”
Appl. Energy
,
113
, pp.
1575
1585
.
10.
Ren
,
F.
,
Cox
,
T.
, and
Wang
,
H.
,
2014
, “
Thermal Runaway Risk Evaluation of Li-Ion Cells Using a Pinch–Torsion Test
,”
J. Power Sources
,
249
, pp.
156
162
.
11.
Wang
,
Q. S.
,
Ping
,
P.
,
Sun
,
J. H.
, and
Chen
,
C. H.
,
2010
, “
Improved Thermal Stability of Lithium Ion Battery by Using Cresyl Diphenyl Phosphate as an Electrolyte Additive
,”
J. Power Sources
,
195
(
21
), pp.
7457
7461
.
12.
Ping
,
P.
,
Wang
,
Q. S.
,
Sun
,
J. H.
,
Xiang
,
H. F.
, and
Chen
,
C. H.
,
2010
, “
Thermal Stabilities of Some Lithium Salts and Their Electrolyte Solutions With and Without Contact to a LiFePO4 Electrode
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1170
A1176
.
13.
Wang
,
Q. S.
,
Ping
,
P.
,
Zhao
,
X. J.
,
Chu
,
G. Q.
,
Sun
,
J. H.
, and
Chen
,
C. H.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
14.
Ping
,
P.
,
Wang
,
Q. S.
,
Huang
,
P. F.
,
Li
,
K.
,
Sun
,
J. H.
,
Kong
,
D. P.
, and
Chen
,
C. H.
,
2015
, “
Study of the Fire Behavior of High-Energy Lithium-Ion Batteries With Full-Scale Burning Test
,”
J. Power Sources
,
285
, pp.
80
89
.
15.
Huang
,
P.
,
Wang
,
Q.
,
Li
,
K.
,
Ping
,
P.
, and
Sun
,
J.
,
2015
, “
The Combustion Behavior of Large Scale Lithium Titanate Battery
,”
Sci. Rep.
,
5
(
1
), p.
7788
.
16.
Wang
,
Q.
,
Sun
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Sun
,
J.
, and
Lin
,
Z.
,
2016
, “
Heat Transfer in the Dynamic Cycling of Lithium–Titanate Batteries
,”
Int. J. Heat Mass Transfer
,
93
, pp.
896
905
.
17.
Andersson
,
P.
,
Blomqvist
,
P.
,
Lorén
,
A.
, and
Larsson
,
F.
,
2013
, “Investigation of Fire Emissions From Li-Ion Batteries,” SP Technical Research Institute of Sweden, Borås, Sweden, Report No.
2013:15
.http://www.diva-portal.org/smash/get/diva2:962743/FULLTEXT01.pdf
18.
Ribiere
,
P.
,
Grugeon
,
S.
,
Morcrette
,
M.
,
Boyanov
,
S.
,
Laruelle
,
S.
, and
Marlair
,
G.
,
2012
, “
Investigation on the Fire-Induced Hazards of Li-Ion Battery Cells by Fire Calorimetry
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5271
5280
.
19.
Mikolajczak
,
C.
,
Kahn
,
M.
,
White
,
K.
, and
Long
,
R. T.
,
2012
,
Lithium-Ion Batteries Hazard and Use Assessment
,
Springer Science & Business Media
, Berlin.
20.
Summer
,
S. M.
,
2010
, “Flammability Assessment of Lithium-Ion and Lithium-Ion Polymer Battery Cells Designed for Aircraft Power Usage,” U.S. Department of Transportation, Federal Aviation Administration, Washington, DC, Report No.
DOT/FAA/AR-09/55
https://www.fire.tc.faa.gov/pdf/09-55.pdf.
21.
Ditch
,
B.
, and
de Vries
,
J.
,
2013
, “Flammability Characterization of Lithium-Ion Batteries in Bulk Storage,” FM Global, Norwood, MD, Report No.
P13037
https://www.fmglobal.com/~/media/Files/FMGlobal/Research%20Technical%20Reports/p13037.pdf?la=en&isGated=true&itemId=%7BE40FF1B5-4893-41AB-92DA-8DFD818EF663%7D.
22.
Park
,
O. B.
,
2013
, “Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on Full-Scale Testing Results,” The Fire Protection Research Foundation, Quincy, MA, Report No.
1205174.000 F0F0 0613 RTL3
.https://www.nfpa.org/-/media/Files/News-and-Research/Resources/Research-Foundation/Research-Foundation-reports/Electrical/EV-BatteriesPart-1.ashx?la=en&hash=5DD90E5E74A38ABD7A4D691E97A746D6CFF7AFD1
23.
BEA, 2014, “Cabin Fire During Cruise,” Bureau d'Enquêtes et d'Analyses, Paris, France, accessed Mar. 2, 2018, www.bea.aero/docspa/2010/f-pk101208.en/pdf/f-pk101208.en.pdf
24.
NREL, 2012, “Vehicle Battery Safety Roadmap Guidance,” National Renewable Energy Laboratory, Golden, CO, accessed Mar. 2, 2018, https://www.nrel.gov/docs/fy13osti/54404.pdf
25.
Rivers
,
P. E.
,
2001
, “
Advancement in Sustainable Fire Suppression Development C6F-Ketone: A Novel New Halon Replacement Alternative to HFCs and PFCs
,”
Halon Options Technical Working Conference
, Apr. 24–26, pp.
341
348
.https://www.nist.gov/sites/default/files/documents/el/fire_research/R0200507.pdf
26.
Kim
,
A.
, and
Crampton
,
G.
,
2010
, “Performance of Novec1230 in Electronic Facility Fire Protection,” National Research Council, Ottawa, ON, Canada, Report No.
NRCC-53526
.https://www.researchgate.net/publication/44742963_Performance_of_Novec1230_in_electronic_facility_fire_protection
27.
Wang
,
Q.
,
Shao
,
G.
,
Duan
,
Q.
,
Chen
,
M.
,
Li
,
Y.
,
Wu
,
K.
,
Liu
,
B.
,
Peng
,
P.
, and
Sun
,
J.
,
2016
, “
The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire
,”
Fire Technol.
,
52
(
2
), pp.
387
396
.
28.
NFPA,
2000
, “Standard on Clean Agent Fire Extinguishing Systems,” National Fire Protection Association, Quincy, MA, Standard No.
NFPA 2001
.http://hamyarenergy.com/static/fckimages/files/NFPA/Hamyar%20Energy%20NFPA%202001%20-%202004.pdf
29.
Xu
,
W.
,
Jiang
,
Y.
, and
Ren
,
X.
,
2016
, “
Combustion Promotion and Extinction of Premixed Counterflow Methane/Air Flames by C6F12O Fire Suppressant
,”
J. Fire Sci.
,
34
(
4
), pp. 289–304.
You do not currently have access to this content.