Water management is a critical issue for a direct methanol fuel cell (DMFC). This study focuses primarily on the use of a super-hydrophilic or super-hydrophobic cathode porous flow field to improve the water management of a passive air-breathing DMFC. The flow field layer was made of an in-house copper-fiber sintered felt (CFSF) which owns good stability and conductivity. Results indicate that the super-hydrophilic flow field performs better at a lower methanol concentration since it facilitates water removal when the water balance coefficient (WBC) is high. In the case of high-concentration operation, the use of a super-hydrophobic pattern is more able to reduce methanol crossover (MCO) and increase fuel efficiency since it helps maintain a lower WBC due to its ability in enhancing water back flow from the cathode to the anode. The effects of methanol concentration and the porosity of the CFSF are also discussed in this work. The cell based on the super-hydrophobic pattern with a porosity of 60% attains the best performance with a maximum power density of 18.4 mW cm−2 and a maximum limiting current density of 140 mA cm−2 at 4 M.

References

References
1.
Rafe Biswas
,
M. A.
, and
Robinson
,
M. D.
,
2017
, “
Prediction of Direct Methanol Fuel Cell Stack Performance Using Artificial Neural Network
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
3
), p.
031008
.
2.
Bayat
,
A.
,
Maus
,
N.
, and
Gordaninejad
,
F.
,
2017
, “
Modeling of a Three-Dimensional Single-Phase Direct Methanol Fuel Cell
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
1
), p.
011003
.
3.
Zhao
,
T. S.
,
Chen
,
R.
,
Yang
,
W. W.
, and
Xu
,
C.
,
2009
, “
Small Direct Methanol Fuel Cells With Passive Supply of Reactants
,”
J. Power Sources
,
191
(
2
), pp.
185
202
.
4.
Kamarudin
,
S. K.
,
Achmad
,
F.
, and
Daud
,
W. R. W.
,
2009
, “
Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6902
6916
.
5.
Chen
,
C. Y.
,
Liu
,
D. H.
,
Huang
,
C. L.
, and
Chang
,
C. L.
,
2007
, “
Portable DMFC System With Methanol Sensor-Less Control
,”
J. Power Sources
,
167
(
2
), pp.
442
449
.
6.
Wee
,
J. H.
,
2007
, “
A Feasibility Study on Direct Methanol Fuel Cells for Laptop Computers Based on a Cost Comparison With Lithium-Ion Batteries
,”
J. Power Sources
,
173
(
1
), pp.
424
436
.
7.
Li
,
X.
,
Faghri
,
A.
, and
Xu
,
C.
,
2010
, “
Water Management of the DMFC Passively Fed With a High-Concentration Methanol Solution
,”
Int. J. Hydrogen Energy
,
35
(
16
), pp.
8690
8698
.
8.
Oliveira
,
V. B.
,
Rangel
,
C. M.
, and
Pinto
,
A. M. F. R.
,
2009
, “
Water Management in Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
8245
8256
.
9.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2010
, “
Analysis of Liquid Water Transport in Cathode Catalyst Layer of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2403
2416
.
10.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2004
, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A399
A406
.
11.
Das
,
P. K.
,
Grippin
,
A.
,
Kwong
,
A.
, and
Webera
,
A. Z.
,
2012
, “
Liquid-Water-Droplet Adhesion-Force Measurements on Fresh and Aged Fuel-Cell Gas-Diffusion Layers
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
B489
B496
.
12.
Shimpalee
,
S.
, and
Lilavivat
,
V.
,
2016
, “
Study of Water Droplet Removal on Etched-Metal Surfaces for Proton Exchange Membrane Fuel Cell Flow Channel
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
1
), p.
011003
.
13.
Saripella
,
B. P.
,
Koylu
,
U. O.
, and
Leu
,
M. C.
,
2015
, “
Experimental and Computational Eva Performance and Water Management Characteristics of a Bio-Inspired Proton Exchange Membrane Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
6
), p.
061007
.
14.
Xu
,
C.
, and
Faghri
,
A.
,
2010
, “
Effect of the Capillary Property of Porous Media on the Water Transport Characteristics in a Passive Liquid-Feed DMFC
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061007
.
15.
Kientiz
,
B.
,
Yamada
,
H.
,
Nonoyama
,
N.
, and
Weber
,
A. Z.
,
2011
, “
Interfacial Water Transport Effects in Proton-Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
1
), p.
011013
.
16.
Santamaria
,
A. D.
,
Das
,
P. K.
,
MacDonald
,
J. C.
, and
Weber
,
A. Z.
,
2014
, “
Liquid-Water Interactions With Gas-Diffusion-Layer Surfaces
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1184
F1193
.
17.
Santamaria
,
A. D.
,
Becton
,
M. K.
,
Cooper
,
N. J.
,
Weber
,
A. Z.
, and
Park
,
J. W.
,
2015
, “
Effect of Cross-Flow on PEFC Liquid-Water Distribution: An In-Situ High Resolution Neutron Radiography Study
,”
J. Power Sources
,
293
(
1
), pp.
162
169
.
18.
Li
,
S.
,
Yuan
,
J.
,
Andersson
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2017
, “
Wavy Surface Cathode Gas Flow Channel Effects on Transport Processes in a Proton Exchange Membrane Fuel Cell
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
3
), p.
031007
.
19.
Jaleh
,
B.
,
Parvin
,
P.
,
Wanichapichart
,
P.
,
Saffar
,
A. P.
, and
Reyhani
,
A.
,
2010
, “
Induced Super Hydrophilicity Due to Surface Modification of Polypropylene Membrane Treated by O2 Plasma
,”
Appl. Surf. Sci.
,
257
(
5
), pp.
1655
1659
.
20.
Wang
,
L. B.
,
Wakayama
,
N. I.
, and
Okada
,
T.
,
2002
, “
Numerical Simulation of a New Water Management for PEM Fuel Cell Using Magnet Particles Deposited in the Cathode Side Catalyst Layer
,”
Electrochem. Commun.
,
4
(
7
), pp.
584
588
.
21.
Fujita
,
H.
,
Shiraki
,
F.
,
Oshima
,
Y.
,
Tatsumi
,
T.
,
Yoshikawa
,
T.
,
Sasaki
,
T.
,
Oshima
,
A.
, and
Washio
,
M.
,
2011
, “
The Effect of Water Uptake Gradient in Membrane Electrode Assembly on Fuel Cell Performance
,”
Radiat. Phys. Chem.
,
80
(
2
), pp.
201
206
.
22.
Seo
,
S. H.
, and
Lee
,
C. S.
,
2011
, “
Experimental Study of Effects of Operating Conditions on Water Transport Phenomena in the Cathode of Polymer Electrolyte Membrane Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
6
), p.
064501
.
23.
Cai
,
Y. H.
,
Hu
,
J.
,
Ma
,
H. P.
,
Yi
,
B. L.
, and
Zhang
,
H. M.
,
2006
, “
Effects of Hydrophilic/Hydrophobic Properties on the Water Behavior in the Micro-Channels of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
161
(
2
), pp.
843
848
.
24.
Deng
,
H.
,
Zhang
,
Y.
,
Zheng
,
X.
,
Li
,
Y.
,
Zhang
,
X.
, and
Liu
,
X.
,
2015
, “
A CNT (Carbon Nanotube) Paper as Cathode Gas Diffusion Electrode for Water Management of Passive μ-DMFC (Micro-Direct Methanol Fuel Cell) With Highly Concentrated Methanol
,”
Energy
,
82
(
1
), pp.
236
241
.
25.
Yan
,
X. H.
,
Zhao
,
T. S.
,
An
,
L.
,
Zhao
,
G.
, and
Zeng
,
L.
,
2015
, “
A Crack-Free and Super-Hydrophobic Cathode Micro-Porous Layer for Direct Methanol Fuel Cells
,”
Appl. Energy
,
138
(
1
), pp.
331
336
.
26.
Yan
,
X. H.
,
Zhao
,
T. S.
,
Zhao
,
G.
,
An
,
L.
, and
Zhou
,
X. L.
,
2015
, “
A Hydrophilic-Hydrophobic Dual-Layer Microporous Layer Enabling the Improved Water Management of Direct Methanol Fuel Cells Operating With Neat Methanol
,”
J. Power Sources
,
294
(
1
), pp.
232
238
.
27.
Jewett
,
G.
,
Guo
,
Z.
, and
Faghri
,
A.
,
2007
, “
Water and Air Management Systems for a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
,
168
(
2
), pp.
434
446
.
28.
Xu
,
C.
,
Faghri
,
A.
,
Li
,
X.
, and
Ward
,
T.
,
2010
, “
Methanol and Water Crossover in a Passive Liquid-Feed Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1769
1777
.
29.
Zhang
,
X.
,
Li
,
Y.
,
Chen
,
H.
,
Wang
,
Z.
,
Zeng
,
Z.
,
Cai
,
M.
,
Zhang
,
Y.
, and
Liu
,
X.
,
2015
, “
A Water Management System for Metal-Based Micro Passive Direct Methanol Fuel Cells
,”
J. Power Sources
,
273
(
1
), pp.
375
379
.
30.
Wang
,
Z.
,
Zhang
,
X.
,
Nie
,
L.
,
Zhang
,
Y.
, and
Liu
,
X.
,
2014
, “
Elimination of Water Flooding of Cathode Current Collector of Micro Passive Direct Methanol Fuel Cell by Superhydrophilic Surface Treatment
,”
Appl. Energy
,
126
(
1
), pp.
107
112
.
31.
Yuan
,
W.
,
Yan
,
Z.
,
Tan
,
Z.
,
Wang
,
A.
,
Li
,
Z.
, and
Tang
,
Y.
,
2016
, “
Anode Optimization Based on Gradient Porous Control Medium for Passive Liquid-Feed Direct Methanol Fuel Cells
,”
Renewable Energy
,
89
(
1
), pp.
71
79
.
32.
Hu
,
J.
,
Yuan
,
W.
,
Chen
,
W.
,
Xu
,
X.
, and
Tang
,
Y.
,
2016
, “
Fabrication and Characterization of Superhydrophobic Copper Fiber Sintered Felt With a 3D Space Network Structure and Their Oil-Water Separation
,”
Appl. Surf. Sci.
,
389
(
1
), pp.
1192
1201
.
33.
Tang
,
Y.
,
Yuan
,
W.
,
Pan
,
M.
, and
Wan
,
Z.
,
2010
, “
Feasibility Study of Porous Copper Fiber Sintered Felt: A Novel Porous Flow Field in Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
18
), pp.
9661
9677
.
34.
Zhou
,
Y. A.
,
Wang
,
X.
,
Guo
,
X.
,
Qiu
,
X.
, and
Liu
,
L.
,
2012
, “
A Water Collecting and Recycling Structure for Silicon-Based Micro Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
967
976
.
35.
Liu
,
J.
,
Sun
,
G.
,
Zhao
,
F.
,
Wang
,
G.
,
Zhao
,
G.
,
Chen
,
L.
,
Yi
,
B.
, and
Xin
,
Q.
,
2004
, “
Study of Sintered Stainless Steel Fiber Felt as Gas Diffusion Backing in Air-Breathing DMFC
,”
J. Power Sources
,
133
(
2
), pp.
175
180
.
36.
Li
,
X.
, and
Faghri
,
A.
,
2011
, “
Effect of the Cathode Open Ratios on the Water Management of a Passive Vapor-Feed Direct Methanol Fuel Cell Fed With Neat Methanol
,”
J. Power Sources
,
196
(
15
), pp.
6318
6324
.
You do not currently have access to this content.