Nanomicro spheres of LiNi0.5Mn1.5O4 materials are prepared by carbonate coprecipitation method. The effect of calcination temperatures on morphology and electrochemical property is explored. Results show that the structure of the material becomes more compact with the increase of the temperature, which is propitious to the improvement of electrical conductivity and activation level of the material. The charge–discharge tests show that the sample obtained at 850 °C (LNMO850) exhibits optimal rate capability and cyclic stability, due to the fact that LNMO850 has a high diffusion coefficient, which is propitious to the improvement of electrical conductivity and activation level of the material.

References

References
1.
Xu
,
T.
,
Wang
,
W.
,
Gordin
,
M. L.
,
Wang
,
D.
, and
Choi
,
D.
,
2010
, “
Lithium-Ion Batteries for Stationary Energy Storage
,”
JOM
,
62
(
9
), pp.
24
30
.
2.
Ji
,
L.
,
Lin
,
Z.
,
Alcoutlabi
,
M.
, and
Zhang
,
X.
,
2011
, “
Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2682
2699
.
3.
Lin
,
H. B.
,
Hu
,
J. N.
,
Rong
,
H. B.
,
Zhang
,
Y. M.
,
Mai
,
S. W.
,
Xing
,
L. D.
,
Xu
,
M. Q.
,
Li
,
X. P.
, and
Li
,
W. S.
,
2014
, “
Porous LiMn2O4 Cubes Architectured With Single-Crystalline Nanoparticles and Exhibiting Excellent Cyclic Stability and Rate Capability as the Cathode of a Lithium Ion Battery
,”
J. Mater. Chem. A
,
2
(
24
), pp.
9272
9279
.
4.
Wang
,
J.
,
Yu
,
Y. Y.
,
Wu
,
B. H.
,
Lin
,
W. Q.
,
Li
,
J. Y.
, and
Zhao
,
J. B.
,
2015
, “
A Homogeneous Intergrown Material of LiMn2O4 and LiNi0.5Mn1.5O4 as a Cathode Material for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
3
(
5
), pp.
2353
2360
.
5.
Ariyoshi
,
K.
,
Iwakoshi
,
Y.
,
Nakayama
,
N.
, and
Ohzuku
,
T.
,
2004
, “
Topotactic Two-Phase Reactions of Li[Ni1/2Mn3/2]O4(P4332) in Nonaqueous Lithium Cells
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A296
A303
.
6.
Aklalouch
,
M.
,
Amarilla
,
J. M.
,
Rojas
,
R. M.
,
Saadoune
,
I.
, and
Rojo
,
J. M.
,
2010
, “
Sub-Micrometric LiCr0.2Ni0.4Mn1.4O4 Spinel as 5V-Cathode Material Exhibiting Huge Rate Capability at 25 and 55 °C
,”
Electrochem. Commun.
,
12
(
4
), pp.
548
552
.
7.
Yaqub
,
A.
,
Lee
,
Y. J.
,
Hwang
,
M. J.
,
Pervez
,
S. A.
,
Farooq
,
U.
,
Choi
,
J. H.
,
Kim
,
D.
,
Choi
,
H. Y.
,
Cho
,
S. B.
, and
Doh
,
C. H.
,
2014
, “
Low Temperature Performance of Graphite and LiNi0.6Co0.2Mn0.2O2 Electrodes in Li-Ion Batteries
,”
J. Mater. Sci.
,
49
(
22
), pp.
7707
7714
.
8.
Kim
,
H. S.
,
Jin
,
K. M.
,
Jin
,
B. S.
,
Kim
,
W. S.
,
Koo
,
H. J.
, and
Wang
,
G.
,
2011
, “
Synthesis and Electrochemical Performance of LiMnxFex-1PO4/C Cathode Material for Lithium Secondary Batteries
,”
Met. Mater. Int.
,
17
(
5
), pp.
817
821
.
9.
Talyosef
,
Y.
,
Markovsky
,
B.
,
Salitra
,
G.
,
Aurbach
,
D.
,
Kim
,
H. J.
, and
Choi
,
S.
,
2005
, “
The Study of LiNi0.5Mn1.5O4 5-V Cathodes for Li-Ion Batteries
,”
J. Power Sources
,
146
(
1
), pp.
664
669
.
10.
Strobel
,
P.
,
Ibarra Palos
,
A.
,
Anne
,
M.
, and
Le Cras
,
F.
,
2000
, “
Structural, Magnetic and Lithium Insertion Properties of Spinel-Type Li2Mn3MO8 Oxides (M = Mg, Co, Ni, Cu)
,”
J. Mater. Chem.
,
10
(
2
), pp.
429
436
.
11.
Patoux
,
S.
,
Sannier
,
L.
,
Lignier
,
H.
,
Reynier
,
Y.
,
Bourbon
,
C.
,
Jouanneau
,
S.
,
Le Cras
,
F.
, and
Martinet
,
S.
,
2008
, “
High Voltage Nickel Manganese Spinel Oxides for Li-Ion Batteries
,”
Electrochim. Acta
,
53
(
12
), pp.
4137
4145
.
12.
Gao
,
Y.
,
Myrtle
,
K.
,
Zhang
,
M.
,
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1996
, “
Valence Band of LiNixMn2-xO4 and Its Effects on the Voltage Profiles of LiNixMn2-xO4/Li Electrochemical Cells
,”
Phys. Rev. A
,
54
(
23
), pp.
16670
16675
.
13.
Wang
,
Y.
, and
Cao
,
G.
,
2008
, “
Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries
,”
Adv. Mater.
,
20
(
12
), pp.
2251
2269
.
14.
Qian
,
Y.
,
Deng
,
Y.
,
Shi
,
Z.
,
Zhou
,
Y.
,
Zhuang
,
Q.
, and
Chen
,
G.
,
2013
, “
Sub-Micrometer-Sized LiMn1.5Ni0.5O4 Spheres as High Rate Cathode Materials for Long-Life Lithium Ion Batteries
,”
Electrochem. Commun.
,
27
, pp.
92
95
.
15.
Fang
,
H.
,
Wang
,
Z.
,
Zhang
,
B.
,
Li
,
X.
, and
Li
,
G.
,
2007
, “
High Performance LiNi0.5Mn1.5O4 Cathode Materials Synthesized by a Combinational Annealing Method
,”
Electrochem. Commun.
,
9
(
5
), pp.
1077
1082
.
16.
Sun
,
Y.
,
Yang
,
Y.
,
Zhan
,
H.
,
Shao
,
H.
, and
Zhou
,
Y.
,
2010
, “
Synthesis of High Power Type LiMn1.5Ni0.5O4 by Optimizing its Preparation Conditions
,”
J. Power Sources
,
195
(
13
), pp.
4322
4326
.
17.
Kunduraci
,
M.
, and
Amatucci
,
G. G.
,
2008
, “
The Effect of Particle Size and Morphology on the Rate Capability of 4.7 V LiMn1.5+δNi0.5−δO4 Spinel Lithium-Ion Battery Cathodes
,”
Electrochim. Acta
,
53
(
12
), pp.
4193
4199
.
18.
Ragavendran
,
K.
,
Chou
,
H. L.
,
Lu
,
L.
,
Lai
,
M. O.
,
Hwang
,
B. J.
,
Ravi Kumar
,
R.
,
Gopukumar
,
S.
,
Emmanuel
,
B.
,
Vasudevan
,
D.
, and
Sherwood
,
D.
,
2011
, “
Crystal Habits of LiMn2O4 and Their Influence on the Electrochemical Performance
,”
Phys. Rev. B
,
176
(
16
), pp.
1257
1263
.
19.
Zheng
,
C. H.
,
Liu
,
X.
,
Wu
,
Z. F.
,
Chen
,
Z. D.
, and
Fang
,
D. L.
,
2013
, “
Excellent Electrochemical Performance of Porous Nanoparticles-Constructed Granule LiMn2O4 Derived From a Highly Reactive Mn3O4
,”
Electrochim. Acta
,
111
, pp.
192
199
.
20.
Yang
,
T.
,
Sun
,
K.
,
Lei
,
Z.
,
Zhang
,
N.
, and
Lang
,
Y.
,
2010
, “
The Influence of Holding Time on the Performance of LiNi0.5Mn1.5O4 Cathode for Lithium Ion Battery
,”
J. Alloys Compd.
,
502
(
1
), pp.
215
219
.
21.
Cui
,
Y. L.
,
Sun
,
Z.
, and
Zhuang
,
Q. C.
,
2011
, “
Electrochemical Properties of a 4.7 V-Class LiNi0.5Mn1.5O4 Positive Electrode Material for High Power Li-Ion Battery
,”
J. Inorg. Organomet. Polym. Mater.
,
21
(
4
), pp.
893
899
.
22.
Lee
,
E.
, and
Persson
,
K. A.
,
2012
, “
Revealing the Coupled Cation Interactions Behind the Electrochemical Profile of LixNi0.5Mn1.5O4
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6047
6051
.
23.
Yang
,
J.
,
Han
,
X.
,
Zhang
,
X.
,
Cheng
,
F.
, and
Chen
,
J.
,
2013
, “
Spinel LiNi0.5Mn1.5O4 Cathode for Rechargeable Lithium Ion Batteries: Nano Versus Micro, Ordered Phase (P4332) Versus Disordered Phase (Fd3m)
,”
Nano Res.
,
6
(
9
), pp.
679
687
.
24.
Cui
,
X. L.
,
Li
,
Y. L.
,
Li
,
S. Y.
,
Li
,
L. X.
, and
Liu
,
J. L.
,
2013
, “
Nanosized LiNi0.5Mn1.5O4 Spinels Synthesized by a High-Oxidation-State Manganese Sol-Gel Method
,”
Ionics
,
19
(
11
), pp.
1489
1494
.
25.
Hwang
,
B. J.
,
Wu
,
Y. W.
,
Venkateswarlu
,
M.
,
Cheng
,
M. Y.
, and
Santhanam
,
R.
,
2009
, “
Influence of Synthesis Conditions on Electrochemical Properties of High-Voltage Li1.02Ni0.5Mn1.5O4 Spinel Cathode Material
,”
J. Power Sources
,
193
(
2
), pp.
828
833
.
26.
Deng
,
J.
,
Pan
,
J.
,
Yao
,
Q.
,
Wang
,
Z.
,
Zhou
,
H.
, and
Rao
,
G.
,
2015
, “
Porous Core-Shell LiMn2O4 Microellipsoids as High-Performance Cathode Materials for Li-Ion Batteries
,”
J. Power Sources
,
278
, pp.
370
374
.
You do not currently have access to this content.