This paper presents the design and part-load operation of a molten carbonate-micro gas turbine (MCFC/MGT) hybrid system (HS), and proposes a multiloop control strategy for the HS. A mathematical model of the system is introduced. Then, the structure of process is changed and the performance of HSs at part-load operation is studied. The novelty includes utilizing some part of the main fuel instead of auxiliary fuel in the combustion stage. The results show that the new configuration has more efficiency (about 63%). In order to keep the operating system within safe limits, variables of the control system are determined. Those controlled variables are as follows: stack temperature, fuel utilization (FU), turbine inlet temperature (TIT), and output power of HS. Based on relative gain array (RGA) analysis, control structures are suggested for two HS. Investigations on results of RGA analysis indicate that the new configuration has more interactions between inputs and outputs and so has different control structure. The dynamic simulation results show that the proposed control structure is achievable for MCFC/MGT HSs.

References

References
1.
Grillo
,
O.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2003
, “
Hybrid Systems for Distributed Power Generation Based on Pressurisation and Heat Recovering of an Existing 100 kW Molten Carbonate Fuel Cell
,”
J. Power Sources
,
115
(
2
), pp.
252
267
.
2.
Oh
,
K. S.
, and
Kim
,
T. S.
,
2006
, “
Performance Analysis on Various System Layouts for the Combination of an Ambient Pressure Molten Carbonate Fuel Cell and a Gas Turbine
,”
J. Power Sources
,
158
(
1
), pp.
455
463
.
3.
Liu
,
A.
, and
Weng
,
Y.
,
2010
, “
Performance Analysis of a Pressurized Molten Carbonate Fuel Cell/Micro-Gas Turbine Hybrid System
,”
J. Power Sources
,
195
(
1
), pp.
204
213
.
4.
Park
,
S. K.
, and
Kim
,
T. S.
,
2006
, “
Comparison Between Pressurized Design and Ambient Pressure Design of Hybrid Solid Oxide Fuel Cell–Gas Turbine Systems
,”
J. Power Sources
,
163
(
1
), pp.
490
499
.
5.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2014
, “
Fuel Cell–Gas Turbine Hybrid System Design—Part II: Dynamics and Control
,”
J. Power Sources
,
254
, pp.
126
136
.
6.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2014
, “
Fuel Cell–Gas Turbine Hybrid System Design—Part I: Steady State Performance
,”
J. Power Sources
,
257
, pp.
412
420
.
7.
Milewski
,
J.
,
Świercz
,
T.
,
Badyda
,
K.
,
Miller
,
A.
,
Dmowski
,
A.
, and
Biczel
,
P.
,
2010
, “
The Control Strategy for a Molten Carbonate Fuel Cell Hybrid System
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
2997
3000
.
8.
Kameswaran
,
S.
,
Biegler
,
L. T.
,
Tobias Junker
,
S.
, and
Ghezel-Ayagh
,
H.
,
2007
, “
Optimal Off-Line Trajectory Planning of Hybrid Fuel Cell/Gas Turbine Power Plants
,”
AIChE J.
,
53
(
2
), pp.
460
474
.
9.
Yang
,
F.
,
Zhu
,
X.-J.
, and
Cao
,
G.-Y.
,
2007
, “
Nonlinear Fuzzy Modeling of a MCFC Stack by an Identification Method
,”
J. Power Sources
,
166
(
2
), pp.
354
361
.
10.
Bittanti
,
S.
,
Errigo
,
A.
,
Prandoni
,
V.
,
Canevese
,
S.
,
De Marco
,
A.
, and
Giuffrida
,
G.
,
2006
, “
Molten Carbonate Fuel Cell Dynamical Modeling
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), pp.
283
293
.
11.
Heidebrecht
,
P.
, and
Sundmacher
,
K.
,
2002
, “
Dynamic Modeling and Simulation of a Countercurrent Molten Carbonate Fuel Cell (MCFC) With Internal Reforming
,”
Fuel Cells
,
2
(
34
), pp.
166
180
.
12.
Lee
,
S.-Y.
,
Kim
,
D.-H.
,
Lim
,
H.-C.
, and
Chung
,
G.-Y.
,
2010
, “
Mathematical Modeling of a Molten Carbonate Fuel Cell (MCFC) Stack
,”
Int. J. Hydrogen Energy
,
35
(
23
), pp.
13096
13103
.
13.
Orecchini
,
F.
,
Bocci
,
E.
, and
Di Carlo
,
A.
,
2006
, “
MCFC and Microturbine Power Plant Simulation
,”
J. Power Sources
,
160
(
2
), pp.
835
841
.
14.
Roberts
,
R. A.
,
Liese
,
E.
,
Gemmen
,
R. S.
, and
Brouwer
,
J.
,
2006
, “
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
294
301
.
15.
Zhang
,
H.
,
Weng
,
S.
,
Su
,
M.
, and
Zhang
,
W.
,
2010
, “
Control Performance Study on the Molten Carbonate Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061006
.
16.
Wu
,
W.
,
Luo
,
J. J.
, and
Hwang
,
J. J.
,
2010
, “
Optimum Start-Up Strategies for Direct Internal Reforming Molten Carbonate Fuel Cell Systems
,”
J. Power Sources
,
195
(
19
), pp.
6732
6739
.
17.
Astorga-Zaragoza
,
C.-M.
,
Alvardo-Martinez
,
V.-M.
,
Zavala-Rio
,
A.
,
Mendez-Ocana
,
R.-M.
, and
Guerrero-Ramirez
,
G.-V.
,
2008
, “
Observer-Based Monitoring of Heat Exchangers
,”
ISA Trans.
,
47
(
1
), pp.
15
24
.
18.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
(
1
), pp.
303
315
.
19.
Wu
,
X.-J.
,
Huang
,
Q.
, and
Zhu
,
X.-J.
,
2011
, “
Power Decoupling Control of a Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Power System
,”
J. Power Sources
,
196
(
3
), pp.
1295
1302
.
You do not currently have access to this content.