This study combined a simple two-dimensional (2D) finite volume model (Kim model), which employs Ohm's law along with charge conservation over the electrodes and Butler–Volmer charge transfer kinetics for prismatic battery cells coupled with the single particle model (SPM) in order to model the thermal state of automotive battery packs. The objective here was to determine the effects of liquid cooling applied to the packs under standard driving cycles. A model developed by Kim provided a means for determining a nonuniform current distribution over the surface of the current collectors. The Kim model is based on the application of Ohm's law over a conducting medium, with empirical source terms representing current flowing into or out of an adjacent electrode layer. Here, a modeling advance is presented where empirical source terms in the Kim model were replaced with ones based on the chemistry and physics occurring inside the battery. As such, fundamental battery function was imparted to the model by integrating the SPM into the 2D finite volume Kim model. The 2D procedure described above was carried out on electrode sheets at different positions inside the cell, and determined thermal generation values that were mapped volumetrically into a heat transfer simulation, which, in turn, updated the electrochemical simulation. Capacity fade kinetics were determined by fitting experimental data to simulated results. With time-temperature profiles produced as described above for different pack cooling levels and varying degrees of cell degradation, a basic SPM simulation was then used with thermal overlays to estimate automotive cell life under various driving scenarios and various cooling levels. With these simulations, scenarios representing different thermal management regimes along with driving behavior were able to show the combined impact on automotive battery pack lifetimes.

References

References
1.
Hannan
,
M. A.
,
Azidin
,
F. A.
, and
Mohamed
,
A.
,
2014
, “
Hybrid Electric Vehicles and Their Challenges: A Review
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
135
150
.
2.
Yilmaz
,
M.
, and
Krein
,
P. T.
,
2013
, “
Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles
,”
IEEE Trans. Power Electron.
,
28
(
5
), pp.
2151
2169
.
3.
Barré
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S.
,
Gérard
,
M.
,
Suard
,
F.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
, pp.
680
689
.
4.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
.
5.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.
6.
Xu
,
X. M.
, and
He
,
R.
,
2013
, “
Research on the Heat Dissipation Performance of Battery Pack Based on Forced Air Cooling
,”
J. Power Sources
,
240
, pp.
33
41
.
7.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
8.
Giuliano
,
M. R.
,
Advani
,
S. G.
, and
Prasad
,
A. K.
,
2011
, “
Thermal Analysis and Management of Lithium-Titanate Batteries
,”
J. Power Sources
,
196
(
15
), pp.
6517
6524
.
9.
Yeow
,
K.
,
Teng
,
H.
,
Thelliez
,
M.
, and
Tan
,
E.
,
2012
, “
Thermal Analysis of a Li-Ion Battery System With Indirect Liquid Cooling Using Finite Element Analysis Approach
,”
SAE Int. J. Altern. Powertrains
,
1
(
1
), pp.
65
78
.
10.
Teng
,
H.
, and
Yeow
,
K.
,
2012
, “
Design of Direct and Indirect Liquid Cooling Systems for High-Capacity, High-Power Lithium-Ion Battery Packs
,”
SAE Int. J. Altern. Powertrains
,
1
(
2
), pp.
525
536
.
11.
Yen
,
E.
,
Chen
,
K.-H.
,
Han
,
T.
, and
Khalighi
,
B.
,
2016
, “
Application of CAEBAT Full Field Approach for a Liquid-Cooled Automotive Battery Pack
,”
SAE
Paper No. 2016-01-1217.
12.
Agubra, V.
, and
Fergus, J.
, 2013, “
Lithium Ion Battery Anode Aging Mechanisms
,”
Materials
,
6
(4), pp. 1310–1325.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452304/
13.
Smith
,
K.
,
Wood
,
E.
,
Santhanagopalan
,
S.
,
Kim
,
G.-H.
, and
Pesaran
,
A.
,
2014
, “
Advanced Models and Controls for Prediction and Extension of Battery Lifetime
,”
Advanced Automotive Battery Conference
, Atlanta, GA, Feb. 4–6, p. 25.https://www.nrel.gov/docs/fy14osti/61037.pdf
14.
Marano
,
V.
,
Onori
,
S.
,
Guezennec
,
Y.
,
Rizzoni
,
G.
, and
Madella
,
N.
,
2009
, “
Lithium-Ion Batteries Life Estimation for Plug-In Hybrid Electric Vehicles
,” IEEE Vehicle Power and Propulsion Conference (
VPPC
), Dearborn, MI, Sept. 7–10, pp.
536
543
.
15.
Lunz
,
B.
,
Yan
,
Z.
,
Gerschler
,
J. B.
, and
Sauer
,
D. U.
,
2012
, “
Influence of Plug-In Hybrid Electric Vehicle Charging Strategies on Charging and Battery Degradation Costs
,”
Energy Policy
,
46
, pp.
511
519
.
16.
Peterson
,
S. B.
,
Apt
,
J.
, and
Whitacre
,
J. F.
,
2010
, “
Lithium-Ion Battery Cell Degradation Resulting From Realistic Vehicle and Vehicle-to-Grid Utilization
,”
J. Power Sources
,
195
(
8
), pp.
2385
2392
.
17.
Darcovich
,
K.
,
Recoskie
,
S.
,
Ribberink
,
H.
,
Pincet
,
F.
, and
Foissac
,
A.
,
2017
, “
Effect on Battery Life of Vehicle-to-Home Electric Power Provision Under Canadian Residential Electrical Demand
,”
Appl. Therm. Eng.
,
114
, pp.
1515
1522
.
18.
Kwon
,
K. H.
,
Shin
,
C. B.
,
Kang
,
T. H.
, and
Kim
,
C. S.
,
2006
, “
A Two-Dimensional Modeling of a Lithium-Polymer Battery
,”
J. Power Sources
,
163
(
1
), pp.
151
157
.
19.
Kim
,
U. S.
,
Shin
,
C. B.
, and
Kim
,
C. S.
,
2008
, “
Effect of Electrode Configuration on the Thermal Behavior of a Lithium-Polymer Battery
,”
J. Power Sources
,
180
(
2
), pp.
909
916
.
20.
Kim
,
U. S.
,
Shin
,
C. B.
, and
Kim
,
C. S.
,
2009
, “
Modeling for the Scale-Up of a Lithium-Ion Polymer Battery
,”
J. Power Sources
,
189
(
1
), pp.
841
846
.
21.
Kim
,
U. S.
,
Yi
,
J.
,
Shin
,
C. B.
,
Han
,
T.
, and
Park
,
S.
,
2011
, “
Modelling the Thermal Behaviour of a Lithium-Ion Battery During Charge
,”
J. Power Sources
,
196
(
11
), pp.
5115
5121
.
22.
Ning
,
G.
, and
Popov
,
B. N.
,
2004
, “
Cycle Life Modeling of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1584
A1591
.
23.
Valoen
,
L. O.
, and
Reimers
,
J. N.
,
2005
, “
Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes
,”
J. Electrochem. Soc.
,
152
(
5
), pp.
A882
A891
.
24.
Newman
,
J.
, and
Tiedemann
,
W.
,
1993
, “
Potential and Current Distribution in Electrochemical Cells Interpretation of the Half-Cell Voltage Measurements as a Function of Reference Electrode Location
,”
J. Electrochem. Soc.
,
140
(
7
), pp.
1961
1968
.
25.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
J.-M.
Tarascon
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.
26.
Rahimian
,
S. K.
,
Rayman
,
S. C.
, and
White
,
R. E.
,
2011
, “
Comparison of Single Particle and Equivalent Circuit Analog Models for a Lithium-Ion Cell
,”
J. Power Sources
,
196
(
20
), pp.
8450
8462
.
27.
Rahimian
,
S. K.
,
Rayman
,
S. C.
, and
White
,
R. E.
,
2011
, “
Optimal Charge Rates for a Lithium Ion Cell
,”
J. Power Sources
,
196
(
23
), pp.
10297
10304
.
28.
Guo
,
M.
,
Sikha
,
G.
, and
White
,
R. E.
,
2011
, “
Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A122
A132
.
29.
Kenney
,
B.
,
Darcovich
,
K.
,
MacNeil
,
D. D.
, and
Davidson
,
I. J.
,
2012
, “
Modelling the Impact of Variations in Electrode Manufacturing on Lithium-Ion Battery Modules
,”
J. Power Sources
,
213
, pp.
391
401
.
30.
Kumaresan
,
K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermal Model for a Li-Ion Cell
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
A164
A171
.
31.
Ning
,
G.
,
White
,
R.
, and
Popov
,
B. N.
,
2006
, “
A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries
,”
Electrochim. Acta
,
51
(
10
), pp.
2012
2022
.
32.
Kalhammer
,
F. R.
,
Kopf
,
B. M.
,
Swan
,
D. H.
,
Roan
,
V. P.
, and
Walsh
,
M. P.
,
2007
, “
Status and Prospects for Zero Emissions Vehicle Technology—Report of the ARB Independent Expert Panel
,” State of California Air Resources Board, Sacramento, CA,
Report
.https://www.arb.ca.gov/msprog/zevprog/zevreview/zev_panel_report.pdf
33.
Yun
,
I. T.
, and
Chem
,
L. G.
,
2003
,
Product Specification, Rechargeable Lithium Ion Battery
,” LG Chem, Seoul, South Korea, Model No.
ICR18650S2 2200 mA
.http://www.monstercells.com/pdf/li-ion/2200-18650.pdf
34.
Arbin Instruments
,
2000
, “
Testing System User Manual, Version of 6 March 2000
,” Arbin Instruments, College Station, TX, pp.
7
35
.
35.
Pollet
,
B. G.
,
Staffell
,
I.
, and
Shang
,
J. L.
,
2012
, “
Current Status of Hybrid, Battery and Fuel Cell Electric Vehicles: From Electrochemistry to Market Prospects
,”
Electrochim. Acta
,
84
(1), pp.
235
249
.
36.
Powell
,
A. C.
, IV
, and
Arroyave
,
R.
,
2008
, “
Open Source Software for Materials and Process Modeling
,”
JOM
,
60
(
5
), pp.
32
39
.
37.
Wu
,
B.
,
Yufit
,
V.
,
Marinescu
,
M.
,
Offer
,
G. J.
,
Martinez-Botas
,
R. F.
, and
Brandon
,
N. P.
,
2013
, “
Coupled Thermal-Electrochemical Modelling of Uneven Heat Generation in Lithium-Ion Battery Packs
,”
J. Power Sources
,
243
, pp.
544
554
.
38.
Yi
,
J.
,
Kim
,
U. S.
,
Shin
,
C. B.
,
Han
,
T.
, and
Park
,
S.
,
2013
, “
Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances Between Current Collecting Tab and Lead Wire
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
A437
A443
.
39.
U.S. Environmental Protection Agency, “
Emission Standards Reference Guide for On-Road and Nonroad Vehicles and Engines
,” U.S. Environmental Protection Agency, Ann Arbor, MI, accessed Jan. 19, 2017, https://www.epa.gov/emission-standards-reference-guide
40.
Ilinca
,
F.
,
Darcovich
,
K.
,
Recoskie
,
S.
,
Kenney
,
B.
, and
MacNeil
,
D. D.
,
2016
, “
Pack Level Thermal Modeling of Prismatic Li-Ion Batteries
,”
Numer. Heat Transfer, Part A
(in press).
41.
Ribberink
,
H.
,
Darcovich
,
K.
, and
Pincet
,
F.
,
2015
, “
Battery Life Impact of Vehicle-to-Grid Application of Electric Vehicles
,” 28th International Electric Vehicle Symposium and Exhibition (
EVS
), Goyang, Korea, May 3–6, pp.
1535
1545
.http://www.evs28.org/event_file/event_file/1/pfile/EVS28_Hajo_Ribberink_Battery_Life_Impact_of_V2G.pdf
You do not currently have access to this content.