We present a macrohomogeneous two-phase model of a proton exchange membrane fuel cell (PEMFC). The model takes into account the mechanical compression of the gas diffusion layer (GDL), the two-phase flow of water, the transport of the gas species, and the electrochemical reaction of the reactant gases. The model was used to simulate the behavior of a PEMFC with a patterned GDL. The results of the reduced model, which considers only the mechanical compression and the two-phase flow, are compared to the experimental ex-situ imbibition data obtained by neutron radiography imaging. The results are in good agreement. Additionally, by using all model features, a simulation of an operating fuel cell has been performed to study the intricate couplings in an operating fuel cell and to examine the patterned GDL effects. The model confirms that the patterned GDL design liberates the predefined domains from liquid water and thus locally increases the oxygen diffusivity.

References

References
1.
Holzer
,
L.
,
Pecho
,
O.
,
Schumacher
,
J.
,
Marmet
,
P.
,
Stenzel
,
O.
,
Büchi
,
F.
,
Lamibrac
,
A.
, and
Münch
,
B.
,
2017
, “
Microstructure-Property Relationships in a Gas Diffusion Layer (GDL) for Polymer Electrolyte Fuel Cells—Part I: Effect of Compression and Anisotropy of Dry GDL
,”
Electrochim. Acta
,
227
, pp.
414
432
.
2.
Holzer
,
L.
,
Pecho
,
O.
,
Schumacher
,
J.
,
Marmet
,
P.
,
Büchi
,
F.
,
Lamibrac
,
A.
, and
Münch
,
B.
,
2017
, “
Microstructure-Property Relationships in a Gas Diffusion Layer (GDL) for Polymer Electrolyte Fuel Cells—Part II: Pressure-Induced Water Injection and Liquid Permeability
,”
Electrochim. Acta
,
241
, pp.
414
432
.
3.
Gerteisen
,
D.
,
Heilmann
,
T.
, and
Ziegler
,
C.
,
2008
, “
Enhancing Liquid Water Transport by Laser Perforation of a GDL in a PEM Fuel Cell
,”
J. Power Sources
,
177
(
2
), pp.
348
354
.
4.
Manahan
,
M.
,
Hatzell
,
M.
,
Kumbur
,
E.
, and
Mench
,
M.
,
2011
, “
Laser Perforated Fuel Cell Diffusion Media—Part I: Related Changes in Performance and Water Content
,”
J. Power Sources
,
196
(
13
), pp.
5573
5582
.
5.
Koresawa
,
R.
, and
Utaka
,
Y.
,
2014
, “
Improvement of Oxygen Diffusion Characteristic in Gas Diffusion Layer With Planar-Distributed Wettability for Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
271
, pp.
16
24
.
6.
Utaka
,
Y.
,
Hirose
,
I.
, and
Tasaki
,
Y.
,
2011
, “
Characteristics of Oxygen Diffusivity and Water Distribution by X-Ray Radiography in Microporous Media in Alternate Porous Layers of Different Wettability for Moisture Control in Gas Diffusion Layer of PEFC
,”
Int. J. Hydrogen Energy
,
36
(
15
), pp.
9128
9138
.
7.
Utaka
,
Y.
, and
Koresawa
,
R.
,
2016
, “
Performance Enhancement of Polymer Electrolyte Fuel Cells by Combining Liquid Removal Mechanisms of a Gas Diffusion Layer With Wettability Distribution and a Gas Channel With Microgrooves
,”
J. Power Sources
,
323
, pp.
37
43
.
8.
Forner-Cuenca
,
A.
,
Manzi-Orezzoli
,
V.
,
Kristiansen
,
P. M.
,
Gubler
,
L.
,
Schmidt
,
T. J.
, and
Boillat
,
P.
,
2016
, “
Mask-Assisted Electron Radiation Grafting for Localized Through-Volume Modification of Porous Substrates: Influence of Electron Energy on Spatial Resolution
,”
Radiat. Phys. Chem.
,
135
, pp.
133
141
.
9.
Forner-Cuenca
,
A.
,
Biesdorf
,
J.
,
Manzi-Orezzoli
,
V.
,
Gubler
,
L.
,
Schmidt
,
T. J.
, and
Boillat
,
P.
,
2016
, “
Advanced Water Management in PEFCs: Diffusion Layers With Patterned Wettability—Part III: Operando Characterization With Neutron Imaging
,”
J. Electrochem. Soc.
,
163
(
13
), pp.
F1389
F1398
.
10.
Forner-Cuenca
,
A.
,
Manzi-Orezzoli
,
V.
,
Biesdorf
,
J.
,
Kazzi
,
M. E.
,
Streich
,
D.
,
Gubler
,
L.
,
Schmidt
,
T. J.
, and
Boillat
,
P.
,
2016
, “
Advanced Water Management in PEFCs: Diffusion Layers With Patterned Wettability—I: Synthetic Routes, Wettability Tuning and Thermal Stability
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F788
F801
.
11.
Forner-Cuenca
,
A.
,
Biesdorf
,
J.
,
Gubler
,
L.
,
Kristiansen
,
P. M.
,
Schmidt
,
T. J.
, and
Boillat
,
P.
,
2015
, “
Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers
,”
Adv. Mater.
,
27
(41), pp.
6317
6322
.
12.
Forner-Cuenca
,
A.
,
Biesdorf
,
J.
,
Lamibrac
,
A.
,
Manzi-Orezzoli
,
V.
,
Büchi
,
F. N.
,
Gubler
,
L.
,
Schmidt
,
T. J.
, and
Boillat
,
P.
,
2016
, “
Advanced Water Management in PEFCs: Diffusion Layers With Patterned Wettability—Part II: Measurement of Capillary Pressure Characteristic With Neutron and Synchrotron Tomography
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
F1038
F1048
.
13.
Weber
,
A. Z.
,
Borup
,
R. L.
,
Darling
,
R. M.
,
Das
,
P. K.
,
Dursch
,
T. J.
,
Gu
,
W.
,
Harvey
,
D.
,
Kusoglu
,
A.
,
Litster
,
S.
,
Mench
,
M. M.
,
Mukundan
,
R.
,
Owejan
,
J. P.
,
Pharoah
,
J. G.
,
Secanell
,
M.
, and
Zenyuk
,
I. V.
,
2014
, “
A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
161
(12), pp.
F1254
F1299
.
14.
Leverett
,
M. C.
,
1941
, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
,
142
(
152
), pp.
152
169
.
15.
Van Genuchten
,
M. Th.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
,
44
(
5
), pp.
892
898
.
16.
Bear
,
J.
,
1988
,
Dynamics of Fluids in Porous Media
,
Dover Publications
,
New York
.
17.
Wang
,
C.
, and
Cheng
,
P.
,
1996
, “
A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media—I: Model Development
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3607
3618
.
18.
Weber
,
A. Z.
, and
Newman
,
J.
,
2006
, “
Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
153
(
12
), pp.
A2205
A2214
.
19.
Kim
,
S.
, and
Mench
,
M. M.
,
2009
, “
Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow
,”
J. Electrochem. Soc.
,
156
(
3
), pp.
B353
B362
.
20.
Takaya
,
K.
, and
Araki
,
T.
,
2016
, “
Numerical Simulation of PEMFC Performance Considering Striped Wettability Distribution of GDL
,”
ECS Trans.
,
75
(
14
), pp.
563
572
.
21.
Lamibrac
,
A.
,
Roth
,
J.
,
Toulec
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Büchi
,
F. N.
,
2016
, “
Characterization of Liquid Water Saturation in Gas Diffusion Layers by X-Ray Tomographic Microscopy
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
F202
F209
.
22.
Gostick
,
J.
,
Ioannidis
,
M.
,
Fowler
,
M.
, and
Pritzker
,
M.
,
2009
, “
Wettability and Capillary Behavior of Fibrous Gas Diffusion Media for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
194
(
1
), pp.
433
444
.
23.
Zamel
,
N.
,
Li
,
X.
,
Becker
,
J.
, and
Wiegmann
,
A.
,
2011
, “
Effect of Liquid Water on Transport Properties of the Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5466
5478
.
24.
Wu
,
H.
,
Li
,
X.
, and
Berg
,
P.
,
2009
, “
On the Modeling of Water Transport in Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
54
(27), pp.
6913
6927
.
25.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
,
2nd ed.
,
John Wiley & Sons
, New York.
26.
Um
,
S.
, and
Wang
,
C.-Y.
,
2006
, “
Computational Study of Water Transport in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
156
(
2
), pp.
211
223
.
27.
Hamann
,
C.
, and
Vielstich
,
W.
,
1998
,
Elektrochemie
,
3rd ed.
,
Wiley-VCH
,
Weinheim, Germany
.
28.
Li
,
X.
,
2006
,
Principles of Fuel Cells
,
Taylor & Francis
, New York.
29.
O'Hayre
,
R.
,
Cha
,
S.-W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2009
,
Fuel Cell Fundamentals
,
2nd ed.
, Wiley, Hoboken, NJ.
30.
Black
,
W. Z.
, and
Hartley
,
J. G.
,
1985
,
Thermodynamics
,
Harper & Row
,
New York
.
31.
Gerteisen
,
D.
,
Heilmann
,
T.
, and
Ziegler
,
C.
,
2009
, “
Modeling the Phenomena of Dehydration and Flooding of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
187
(1), pp.
165
181
.
32.
Springer
,
T.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
8
(
138
), pp.
2334
2341
.
33.
Mittelsteadt
,
C.
, and
Staser
,
J.
,
2011
, “
Simultaneous Water Uptake, Diffusivity and Permeability Measurement of Perfluorinated Sulfonic Acid Polymer Electrolyte Membranes
,”
ECS Trans.
,
41
(
1
), pp.
101
121
.
34.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
.
35.
Reddy
,
J. N.
,
2006
,
An Introduction to the Finite Elements Method
,
3rd ed.
,
McGraw-Hill
,
Boston, MA
.
36.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Fox
,
D.
,
2014
,
The Finite Element Method for Solid and Structural Mechanics
,
7th ed.
,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
.
37.
Boillat
,
P.
, and
Scherer
,
G. G.
,
2013
, “
Neutron imaging
,”
PEM Fuel Cell Durability Handbook
, Vol. 2,
H.
Wang
,
H.
Li
, and
X.-Z.
Yuan
, eds.,
Taylor & Francis
, Boca Raton, FL.
38.
Boillat
,
P.
,
2009
, “
Advanced Characterization of Polymer Electrolyte Fuel Cells Using High Resolution Neutron Imaging
,”
Ph.D. thesis
, ETH Zürich, Zürich, Switzerland.https://www.research-collection.ethz.ch/handle/20.500.11850/151495
39.
He
,
W.
,
Yi
,
J.
, and
van Nguyen
,
T.
,
2000
, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
,
46
(
10
), pp.
2053
2064
.
40.
Natarajan
,
D.
, and
Van Nguyen
,
T.
,
2001
, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
,
148
(12), pp.
A1324
A1335.
41.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
,
2004
, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
,
128
(2), pp.
173
184
.
42.
Lin
,
G.
,
He
,
W.
, and
Van Nguyen
,
T.
,
2004
, “
Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
151
(
12
), pp.
A1999
A2006
.
43.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
,
2007
, “
Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media—II: Compression Effect
,”
J. Electrochem. Soc.
,
154
(12), pp.
B1295
B1304
.
44.
Nafion
, 2016, “
Nafion® PFSA Membranes NR-211 and NR-212. Data Sheet
,” Nafion, Fayetteville, NC, accessed Dec. 15, 2017, https://nafionstore-us.americommerce.com/Shared/P11_C10610_Nafion_NR-211__NR-212_P11.pdf
45.
Zhang
,
L.
,
Liu
,
Y.
,
Song
,
H.
,
Wang
,
S.
,
Zhou
,
Y.
, and
Hu
,
S. J.
,
2006
, “
Estimation of Contact Resistance in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
162
(
2
), pp.
1165
1171
.
46.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
,
2006
, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(1), pp.
228
238
.
47.
FuelCellStore
, 2017, “
Toray Carbon Fiber Paper. TGP-H, Data Sheet
,” FuelCellStore, College Station, TX, accessed Dec. 15, 2017, http://www.fuelcellstore.com/spec-sheets/toray-carbon-paper-data-sheet.pdf
48.
Li
,
G.
, and
Pickup
,
P. G.
,
2003
, “
Ionic Conductivity of PEMFC Electrodes
,”
J. Electrochem. Soc.
,
150
(11), pp.
C745
C752.
49.
El-kharouf
,
A.
,
Mason
,
T. J.
,
Brett
,
D. J. L.
, and
Pollet
,
B. G.
,
2012
, “
Ex-Situ Characterisation of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
218
, pp.
393
404
.
You do not currently have access to this content.