Enzymatic electrochemical cells (EECs) are a candidate for providing “green” solutions to a plethora of low-power, long-lifetime applications. A prototype three-electrode biobattery configuration of an EEC has been designed and fabricated for neutron imaging and electrochemical testing to characterize cell performance. The working electrode (WE) was catalyzed by a polymer ink-based biocatalyst with carbon felt (CF) serving as the supporting material. Results of both ex situ and in operando neutron imaging are presented as methods for relating fuel distribution, the distribution of the enzymes, and cell electrochemical performance. Neutron radiography (NR) was also performed on fuel solutions of varied concentrations to calibrate fuel solution thickness and allow for transient mapping of the fuel distribution. The calibration data proved useful in mapping the thickness of fuel solution during transient radiography. When refueled after electrochemical testing and neutron imaging, the cell surpassed its original performance, indicating that exposure to the neutron beam had not detrimentally affected enzyme activity. In operando mapping of the fuel solution suggests that increased wetting of the catalyst region increases cell performance. The relation of this performance increase to active region wetting is further supported by fuel distributions observed via the ex situ tomography. While useful in mapping aggregate solution wetting, the calibration data did not support reliable mapping of detailed glucose concentration in the WE. The results presented further demonstrate potential for the application of neutron imaging for the study of EECs, particularly with respect to mapping the distribution of aqueous fuel solutions.

References

References
1.
Zhu
,
Z.
,
Sun
,
F.
,
Zhang
,
X.
, and
Zhang
,
Y.-H.
,
2012
, “
Deep Oxidation of Glucose in Enzymatic Fuel Cells Through a Synthetic Enzymatic Pathway Containing a Cascade of Two Thermostable Dehydrogenases
,”
Biosens. Bioelectron.
,
36
(
1
), pp.
110
115
.
2.
Looney
,
E. E.
,
Nelson
,
G. J.
,
van Zandt
,
Z. K.
,
Ulyanova
,
Y.
,
Singhal
,
S.
,
Santodonato
,
L. J.
, and
Bilheux
,
H. Z.
,
2016
, “
Ex Situ and In Situ Neutron Imaging of Enzymatic Electrochemical Cells
,”
Electrochim. Acta
,
213
, pp.
244
251
.
3.
Potter
,
M. C.
,
1911
, “
Electrical Effects Accompanying the Decomposition of Organic Compounds
,”
Proc. R. Soc. London B
,
84
(
571
), pp.
260
276
.
4.
Yahiro
,
A. T.
,
Lee
,
S. M.
, and
Kimble
,
D. O.
,
1964
, “
Bioelectrochemistry: I. Enzyme Utilizing Bio-Fuel Cell Studies
,”
Biochim. Biophys. Acta
,
88
(
2
), pp.
375
383
.
5.
Rasmussen
,
M.
,
Abdellaoui
,
S.
, and
Minteer
,
S. D.
,
2016
, “
Enzymatic Biofuel Cells: 30 Years of Critical Advancements
,”
Biosens. Bioelectron.
,
76
, pp.
91
102
.
6.
Ghassemi
,
Z.
, and
Slaughter
,
G.
,
2017
, “
Biological Fuel Cells and Membranes
,”
Membranes
,
7
(
1
), p.
3
.
7.
Calabrese Barton
,
S.
,
Gallaway
,
J.
, and
Atanassov
,
P.
,
2004
, “
Enzymatic Biofuel Cells for Implantable and Microscale Devices
,”
Chem. Rev.
,
104
(
10
), pp.
4867
4886
.
8.
Minteer
,
S. D.
,
Liaw
,
B. Y.
, and
Cooney
,
M. J.
,
2007
, “
Enzyme-Based Biofuel Cells
,”
Curr. Opin. Biotechnol.
,
18
(
3
), pp.
228
234
.
9.
Zhao
,
C.
,
Gai
,
P.
,
Song
,
R.
,
Chen
,
Y.
,
Zhang
,
J.
, and
Zhu
,
J. J.
,
2017
, “
Nanostructured Material-Based Biofuel Cells: Recent Advances and Future Prospects
,”
Chem. Soc. Rev.
,
46
(
5
), pp.
1545
1564
.
10.
Palmore
,
G. T. R.
,
Bertschy
,
H.
,
Bergens
,
S. H.
, and
Whitesides
,
G. M.
,
1998
, “
A Methanol/Dioxygen Biofuel Cell That Uses NAD+-Dependent Dehydrogenases as Catalysts: Application of an Electro-Enzymatic Method to Regenerate Nicotinamide Adenine Dinucleotide at Low Overpotentials
,”
J. Electroanal. Chem.
,
443
(
1
), pp.
155
161
.
11.
Stolarczyk
,
K.
,
Kizling
,
M.
,
Majdecka
,
D.
,
Żelechowska
,
K.
,
Biernat
,
J. F.
,
Rogalski
,
J.
, and
Bilewicz
,
R.
,
2013
, “
Biobatteries and Biofuel Cells With Biphenylated Carbon Nanotubes
,”
J. Power Sources
,
249
, pp.
263
269
.
12.
Wu
,
X.
,
Zhao
,
F.
,
Varcoe
,
J. R.
,
Thumser
,
A. E.
,
Avignone-Rossa
,
C.
, and
Slade
,
R. C. T.
,
2009
, “
A One-Compartment Fructose/Air Biological Fuel Cell Based on Direct Electron Transfer
,”
Biosens. Bioelectron.
,
25
(
2
), pp.
326
331
.
13.
Aaron
,
D. S.
,
Borole
,
A. P.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
,
Yiacoumi
,
S.
, and
Tsouris
,
C.
,
2011
, “
Quantifying the Water Content in the Cathode of Enzyme Fuel Cells Via Neutron Imaging
,”
J. Power Sources
,
196
(
4
), pp.
1769
1775
.
14.
Dill
,
K. A.
,
1990
, “
Dominant Forces in Protein Folding
,”
Biochemistry
,
29
(
31
), pp.
7133
7155
.
15.
Gouda
,
M. D.
,
Thakur
,
M. S.
, and
Karanth
,
N. G.
,
2002
, “
Reversible Denaturation Behavior of Immobilized Glucose Oxidase
,”
Appl. Biochem. Biotechnol.
,
102
(
1–6
), pp.
471
480
.
16.
Cho
,
K. T.
,
Turhan
,
A.
,
Lee
,
J. H.
,
Brenizer
,
J. S.
,
Heller
,
A. K.
,
Shi
,
L.
, and
Mench
,
M. M.
,
2009
, “
Probing Water Transport in Polymer Electrolyte Fuel Cells With Neutron Radiography
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
605
(
1–2
), pp.
119
122
.
17.
Manke
,
I.
,
Markötter
,
H.
,
Tötzke
,
C.
,
Kardjilov
,
N.
,
Grothausmann
,
R.
,
Dawson
,
M.
, and
Hartnig
,
C.
,
2011
, “
Investigation of Energy-Relevant Materials With Synchrotron X-Rays and Neutrons
,”
Adv. Eng. Mater.
,
13
(
8
), pp.
712
729
.
18.
Strobl
,
M.
,
Manke
,
I.
,
Kardjilov
,
N.
,
Hilger
,
A.
,
Dawson
,
M.
, and
Banhart
,
J.
,
2009
, “
Advances in Neutron Radiography and Tomography
,”
J. Phys. D
,
42
(
24
), p.
243001
.
19.
Weber
,
A. Z.
, and
Hickner
,
M. A.
,
2008
, “
Modeling and High-Resolution-Imaging Studies of Water-Content Profiles in a Polymer-Electrolyte-Fuel-Cell Membrane-Electrode Assembly
,”
Electrochim. Acta
,
53
(
26
), pp.
7668
7674
.
20.
Kang
,
M.
,
Bilheux
,
H. Z.
,
Voisin
,
S.
,
Cheng
,
Z. L.
,
Perfect
,
E.
,
Horita
,
J.
, and
Warren
,
J. M.
,
2013
, “
Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
708
, pp.
24
31
.
21.
González-García
,
J.
,
Bonete
,
P.
,
Expósito
,
E.
,
Montiel
,
V.
,
Aldaz
,
A.
, and
Torregrosa-Maciá
,
R.
,
1999
, “
Characterization of a Carbon Felt Electrode: Structural and Physical Properties
,”
J. Mater. Chem.
,
9
(
2
), pp.
419
426
.
22.
Ulyanova
,
Y.
,
Babanova
,
S.
,
Pinchon
,
E.
,
Matanovic
,
I.
,
Singhal
,
S.
, and
Atanassov
,
P.
,
2014
, “
Effect of Enzymatic Orientation Through the Use of Syringaldazine Molecules on Multiple Multi-Copper Oxidase Enzymes
,”
Phys. Chem. Chem. Phys.
,
16
(
26
), pp.
13367
13375
.
23.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
, and
Pietzsch
,
T.
,
2012
, “
FIJI: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
, pp.
676
682
.
24.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
, pp.
671
675
.
25.
Zawisky
,
M.
,
Bastürk
,
M.
,
Rehacek
,
J.
, and
Hradil
,
Z.
,
2004
, “
Neutron Tomographic Investigations of Boron-Alloyed Steels
,”
J. Nucl. Mater.
,
327
(
2–3
), pp.
188
193
.
You do not currently have access to this content.