The utilization of intermittent renewable energy sources needs low-cost, reliable energy storage systems in the future. Among various electrochemical energy storage systems, redox flow batteries (RFBs) are promising with merits of independent energy storage and power generation capability, localization flexibility, high efficiency, low scaling-up cost, and excellent long charge/discharge cycle life. RFBs typically use metal ions as reacting species. The most exploited types are all-vanadium RFBs (VRFBs). Here, we discuss the core components for the VRFBs, including the development and application of different types of membranes, electrode materials, and stack system. In addition, we introduce the recent progress in the discovery of novel electrolytes, such as redox-active organic compounds, polymers, and organic/inorganic suspensions. Versatile structures, tunable properties, and abundant resources of organic-based electrolytes make them suitable for cost-effective stationary applications. With the active species in solid form, suspension electrolytes are expected to provide enhanced volumetric energy densities.

References

1.
Soloveichik
,
G. L.
,
2015
, “
Flow Batteries: Current Status and Trends
,”
Chem. Rev.
,
115
(
20
), pp.
11533
11558
.
2.
Noack
,
J.
,
Roznyatovskaya
,
N.
,
Herr
,
T.
, and
Fischer
,
P.
,
2015
, “
The Chemistry of Redox-Flow Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
34
), pp.
9776
9809
.
3.
Li
,
L.
,
Kim
,
S.
,
Wang
,
W.
,
Vijayakumar
,
M.
,
Nie
,
Z.
,
Chen
,
B.
,
Zhang
,
J.
,
Xia
,
G.
,
Hu
,
J.
,
Graff
,
G.
,
Liu
,
J.
, and
Yang
,
Z.
,
2011
, “
A Stable Vanadium Redox-Flow Battery With High Energy Density for Large-Scale Energy Storage
,”
Adv. Energy Mater.
,
1
(
3
), pp.
394
400
.
4.
Chakrabarti
,
M. H.
,
Brandon
,
N. P.
,
Hajimolana
,
S. A.
,
Tariq
,
F.
,
Yufit
,
V.
,
Hashim
,
M. A.
,
Hussain
,
M. A.
,
Low
,
C. T. J.
, and
Aravind
,
P. V.
,
2014
, “
Application of Carbon Materials in Redox Flow Batteries
,”
J. Power Sources
,
253
, pp.
150
166
.
5.
Chen
,
R.
,
Kim
,
S.
, and
Chang
,
Z.
,
2017
, “
Redox Flow Batteries: Fundamentals and Applications
,”
Redox: Principles and Advance Applications
,
M. A. A.
Khalid
, ed.,
InTech
,
Rijeka, Croatia
.
6.
Park
,
M.
,
Ryu
,
J.
, and
Cho
,
J.
,
2015
, “
Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries
,”
Chem. Asian J.
,
10
(
10
), pp.
2096
2110
.
7.
Chen
,
R.
, and
Hempelmann
,
R.
,
2016
, “
Ionic Liquid-Mediated Aqueous Redox Flow Batteries for High Voltage Applications
,”
Electrochem. Commun.
,
70
, pp.
56
59
.
8.
Li
,
B.
, and
Liu
,
J.
,
2017
, “
Progress and Directions in Low-Cost Redox Flow Batteries for Large-Scale Energy Storage
,”
Natl. Sci. Rev.
,
4
(1), pp.
91
105
.
9.
Duduta
,
M.
,
Ho
,
B.
,
Wood
,
V. C.
,
Limthongkul
,
P.
,
Brunini
,
V. E.
,
Carter
,
W. C.
, and
Chiang
,
Y. M.
,
2011
, “
Semi-Solid Lithium Rechargeable Flow Battery
,”
Adv. Energy Mater.
,
1
(
4
), pp.
511
516
.
10.
Schwenzer
,
B.
,
Zhang
,
J.
,
Kim
,
S.
,
Li
,
L.
,
Liu
,
J.
, and
Yang
,
Z.
,
2011
, “
Membrane Development for Vanadium Redox Flow Batteries
,”
ChemSusChem
,
4
(
10
), pp.
1388
1406
.
11.
Doan
,
T. N. L.
,
Hoang
,
T. K. A.
, and
Chen
,
P.
,
2015
, “
Recent Development of Polymer Membranes as Separators for All-Vanadium Redox Flow Batteries
,”
RSC Adv.
,
5
(
89
), pp.
72805
72815
.
12.
Peng
,
S.
,
Yan
,
X.
,
Wu
,
X.
,
Zhang
,
D.
,
Luo
,
Y.
,
Su
,
L.
, and
He
,
G.
,
2017
, “
Thin Skinned Asymmetric Polybenzimidazole Membranes With Readily Tunable Morphologies for High-Performance Vanadium Flow Batteries
,”
RSC Adv.
,
7
(
4
), pp.
1852
1862
.
13.
Yuan
,
Z.
,
Duan
,
Y.
,
Zhang
,
H.
,
Li
,
X.
,
Zhang
,
H.
, and
Vankelecom
,
I.
,
2016
, “
Advanced Porous Membranes With Ultra-High Selectivity and Stability for Vanadium Flow Batteries
,”
Energy Environ. Sci.
,
9
(
2
), pp.
441
447
.
14.
Zhao
,
Y.
,
Li
,
M.
,
Yuan
,
Z.
,
Li
,
X.
,
Zhang
,
H.
, and
Vankelecom
,
I. F. J.
,
2016
, “
Advanced Charged Sponge-Like Membrane With Ultrahigh Stability and Selectivity for Vanadium Flow Batteries
,”
Adv. Funct. Mater.
,
26
(
2
), pp.
210
218
.
15.
Zhao
,
Y.
,
Lu
,
W.
,
Yuan
,
Z.
,
Qiao
,
L.
,
Li
,
X.
, and
Zhang
,
H.
,
2017
, “
Advanced Charged Porous Membranes With Flexible Internal Crosslinking Structures for Vanadium Flow Batteries
,”
J. Mater. Chem. A
,
5
(
13
), pp.
6193
6199
.
16.
Maurya
,
S.
,
Shin
,
S. H.
,
Lee
,
J. Y.
,
Kim
,
Y.
, and
Moon
,
S. H.
,
2016
, “
Amphoteric Nanoporous Polybenzimidazole Membrane With Extremely Low Crossover for a Vanadium Redox Flow Battery
,”
RSC Adv.
,
6
(
7
), pp.
5198
5204
.
17.
Luo
,
T.
,
David
,
O.
,
Gendel
,
Y.
, and
Wessling
,
M.
,
2016
, “
Porous Poly(Benzimidazole) Membrane for All Vanadium Redox Flow Battery
,”
J. Power Sources
,
312
, pp.
45
54
.
18.
Kangro
,
W.
, and
Pieper
,
H.
,
1962
, “
Zur Frage der Speicherung von Elektrischer Energie in Flüssigkeiten
,”
Electrochim. Acta
,
7
(4), pp.
435
448
.
19.
Koros
,
W. J.
,
Ma
,
Y. H.
, and
Shimidzu
,
T.
,
1996
, “
Terminology for Membranes and Membrane Processes
,”
J. Membr. Sci.
,
120
(2), pp.
149
159
.
20.
Nagarjuna
,
G.
,
Hui
,
J.
,
Cheng
,
K. J.
,
Lichtenstein
,
T.
,
Shen
,
M.
,
Moore
,
J. S.
, and
Rodríguez-López
,
J.
,
2014
, “
Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents
,”
J. Am. Chem. Soc.
,
136
(
46
), pp.
16309
16316
.
21.
Janoschka
,
T.
,
Martin
,
N.
,
Martin
,
U.
,
Friebe
,
C.
,
Morgenstern
,
S.
,
Hiller
,
H.
,
Hager
,
M. D.
, and
Schubert
,
U. S.
,
2015
, “
An Aqueous, Polymer-Based Redox-Flow Battery Using Non-Corrosive, Safe, and Low-Cost Materials
,”
Nature
,
527
(
7576
), pp.
78
81
.
22.
Zhang
,
H.
,
Zhang
,
H.
,
Li
,
X.
,
Mai
,
Z.
, and
Zhang
,
J.
,
2011
, “
Nanofiltration (NF) Membranes: The Next Generation Separators for All Vanadium Redox Flow Batteries (VRBs)?
,”
Energy Environ. Sci.
,
4
(
5
), pp.
1676
1679
.
23.
Zhang
,
H.
,
Zhang
,
H.
, and,
Li
,
X.
,
2013
, “
Nanofiltration Membranes for Vanadium Flow Battery Application
,”
ECS Trans.
,
53
(
7
), pp.
65
68
.
24.
Chae
,
I. S.
,
Luo
,
T.
,
Moon
,
G. H.
,
Ogieglo
,
W.
,
Kang
,
Y. S.
, and
Wessling
,
M.
,
2016
, “
Ultra-High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes With Intrinsic Nanopores for Redox Flow Battery
,”
Adv. Energy Mater.
,
6
(
16
), p.
1600517
.
25.
Budd
,
P. M.
,
Elabas
,
E. S.
,
Ghanem
,
B. S.
,
Maakhseed
,
S.
,
McKeown
,
N. B.
,
Msayib
,
K. J.
,
Tattershall
,
C. E.
, and
Wang
,
D.
,
2004
, “
Solution-Processed, Organophilic Membrane Derived From a Polymer of Intrinsic Microporosity
,”
Adv. Mater.
,
16
(
5
), pp.
456
459
.
26.
Du
,
N.
,
Robertson
,
G. P.
,
Song
,
J.
,
Pinnau
,
I.
, and
Guiver
,
M. D.
,
2009
, “
High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) With Tunable Gas Transport Properties
,”
Macromolecules
,
42
(
16
), pp.
6038
6043
.
27.
Kim
,
B. G.
,
Henkensmeier
,
D.
,
Kim
,
H. J.
,
Jang
,
H. J.
,
Nam
,
S. W.
, and
Lim
,
T. H.
,
2014
, “
Sulfonation of PIM-1: Towards Highly Oxygen Permeable Binders for Fuel Cell Application
,”
Macromol. Res.
,
22
(
1
), pp.
92
98
.
28.
Hsu
,
W. Y.
, and
Gierke
,
T. D.
,
1983
, “
Ion Transport and Clustering in Nafion Perfluorinated Membranes
,”
J. Membr. Sci.
,
13
(
3
), pp.
307
326
.
29.
Coury
,
L.
,
1999
, “
Conductance Measurements—Part 1: Theory
,”
Curr. Sep.
,
18
, pp.
91
96
.
30.
Jeong
,
S.
,
Kim
,
L.
,
Kwon
,
Y.
, and
Kim
,
S.
,
2014
, “
Effect of Nafion Membrane Thickness on Performance of Vanadium Redox Flow Battery
,”
Korean J. Chem. Eng.
,
31
(
11
), pp.
2081
2087
.
31.
Jiang
,
B.
,
Wu
,
L.
,
Yu
,
L.
,
Qiu
,
X.
, and
Xi
,
J.
,
2016
, “
A Comparative Study of Nafion Series Membranes for Vanadium Redox Flow Batteries
,”
J. Membr. Sci.
,
510
, pp.
18
26
.
32.
Jiang
,
B.
,
Yu
,
L.
,
Wu
,
L.
,
Mu
,
D.
,
Liu
,
L.
,
Xi
,
J.
, and
Qiu
,
X.
,
2016
, “
Insights Into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance
,”
ACS Appl. Mater. Interfaces
,
8
(
19
), pp.
12228
12238
.
33.
Henkensmeier
,
D.
, and
Gubler
,
L.
,
2014
, “
Shape Memory Effect in Radiation Grafted Ion Exchange Membranes
,”
J. Mater. Chem. A
,
2
(
25
), pp.
9482
9485
.
34.
Hink
,
S.
,
Henkensmeier
,
D.
,
Jang
,
J. H.
,
Kim
,
H. J.
,
Han
,
J.
, and
Nam
,
S. W.
,
2015
, “
Reduced In-Plane Swelling of Nafion by a Biaxial Modification Process
,”
Macromol. Chem. Phys.
,
216
(
11
), pp.
1235
1243
.
35.
Moore
,
R. B.
, and
Martin
,
C. R.
,
1988
, “
Chemical and Morphological Properties of Solution-Cast Perfluorosulfonate Ionomers
,”
Macromolecules
,
21
(
5
), pp.
1334
1339
.
36.
Li
,
J.
,
Yang
,
X.
,
Tang
,
H.
, and
Pan
,
M.
,
2010
, “
Durable and High Performance Nafion Membrane Prepared Through High-Temperature Annealing Methodology
,”
J. Membr. Sci.
,
361
(1–2), pp.
38
42
.
37.
Kim
,
Y. S.
,
Welch
,
C. F.
,
Hjelm
,
R. P.
,
Mack
,
N. H.
,
Labouriau
,
A.
, and
Orler
,
E. B.
,
2015
, “
Origin of Toughness in Dispersion-Cast Nafion Membranes
,”
Macromolecules
,
48
(
7
), pp.
2161
2172
.
38.
Roy
,
A.
,
Lee
,
H. S.
, and
McGrath
,
J. E.
,
2008
, “
Hydrophilic–Hydrophobic Multiblock Copolymers Based on Poly(Arylene Ether Sulfone)s as Novel Proton Exchange Membranes—Part B
,”
Polymer
,
49
(
23
), pp.
5037
5044
.
39.
Yang
,
S.
,
Ahn
,
Y.
, and
Kim
,
D.
,
2017
, “
Poly(Arylene Ether Ketone) Proton Exchange Membranes Grafted With Long Aliphatic Pendant Sulfonated Groups for Vanadium Redox Flow Batteries
,”
J. Mater. Chem. A
,
5
(
5
), pp.
2261
2270
.
40.
Gindt
,
B. P.
,
Tang
,
Z.
,
Watkins
,
D. L.
,
Abebe
,
D. G.
,
Seo
,
S.
,
Tuli
,
S.
,
Ghassemi
,
H.
,
Zawodzinski
,
T. A.
, and
Fujiwara
,
T.
,
2017
, “
Effects of Sulfonated Side Chains Used in Polysulfone Based PEMs for VRFB Separator
,”
J. Membr. Sci.
,
532
, pp.
58
67
.
41.
Jung
,
H. Y.
,
Jeong
,
S.
, and
Kwon
,
Y.
,
2016
, “
The Effects of Different Thick Sulfonated Poly (Ether Ether Ketone) Membranes on Performance of Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5090
A5096
.
42.
Xi
,
J.
,
Li
,
Z.
,
Yu
,
L.
,
Yin
,
B.
,
Wang
,
L.
,
Liu
,
L.
,
Qiu
,
X.
, and
Chen
,
L.
,
2015
, “
Effect of Degree of Sulfonation and Casting Solvent on Sulfonated Poly(Ether Ether Ketone) Membrane for Vanadium Redox Flow Battery
,”
J. Power Sources
,
285
, pp.
195
204
.
43.
Kreuer
,
K. D.
,
2001
, “
On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells
,”
J. Membr. Sci.
,
185
(
1
), pp.
29
39
.
44.
Vijayakumar
,
M.
,
Luo
,
Q.
,
Lloyd
,
R.
,
Nie
,
Z.
,
Wei
,
X.
,
Li
,
B.
,
Sprenkle
,
V.
,
Londono
,
J.-D.
,
Unlu
,
M.
, and
Wang
,
W.
,
2016
, “
Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries
,”
ACS Appl. Mater. Interfaces
,
8
(
50
), pp.
34327
34334
.
45.
Chromik
,
A.
,
dosSantos
,
A. R.
,
Turek
,
T.
,
Kunz
,
U.
,
Häring
,
T.
, and
Kerres
,
J.
,
2015
, “
Stability of Acid-Excess Acid–Base Blend Membranes in All-Vanadium Redox-Flow Batteries
,”
J. Membr. Sci.
,
476
, pp.
148
155
.
46.
Nambi
,
K. N.
,
Henkensmeier
,
D.
,
Jang
,
J. H.
, and
Kim
,
H.-J.
,
2014
, “
Nanocomposite Membranes for Polymer Electrolyte Fuel Cells
,”
Macromol. Mater. Eng.
,
299
(9), pp.
1031
1041
.
47.
Yin
,
B.
,
Yu
,
L.
,
Jiang
,
B.
,
Wang
,
L.
, and
Xi
,
J.
,
2016
, “
Nano Oxides Incorporated Sulfonated Poly(Ether Ether Ketone) Membranes With Improved Selectivity and Stability for Vanadium Redox Flow Battery
,”
J. Solid State Electrochem.
,
20
(
5
), pp.
1271
1283
.
48.
Chen
,
D.
, and
Hickner
,
M. A.
,
2013
, “
V5+ Degradation of Sulfonated Radel Membranes for Vanadium Redox Flow Batteries
,”
Phys. Chem. Chem. Phys.
,
15
(
27
), pp.
11299
11305
.
49.
Kim
,
S.
,
Tighe
,
T. B.
,
Schwenzer
,
B.
,
Yan
,
J.
,
Zhang
,
J.
,
Liu
,
J.
,
Yang
,
Z.
, and
Hickner
,
M. A.
,
2011
, “
Chemical and Mechanical Degradation of Sulfonated Poly(Sulfone) Membranes in Vanadium Redox Flow Batteries
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1201
1213
.
50.
Huang
,
S. L.
,
Yu
,
H. F.
, and
Lin
,
Y. S.
,
2017
, “
Modification of Nafion Membrane Via a Sol-Gel Route for Vanadium Redox Flow Energy Storage Battery Applications
,”
J. Chem.
,
2017
, p.
4590952
.
51.
Yu
,
L.
,
Lin
,
F.
,
Xu
,
L.
, and
Xi
,
J.
,
2016
, “
A Recast Nafion/Graphene Oxide Composite Membrane for Advanced Vanadium Redox Flow Batteries
,”
RSC Adv.
,
6
(
5
), pp.
3756
3763
.
52.
Hu
,
S.
,
Lozada-Hidalgo
,
M.
,
Wang
,
F. C.
,
Mishchenko
,
A.
,
Schedin
,
F.
,
Nair
,
R. R.
,
Hill
,
E. W.
,
Boukhvalov
,
D. W.
,
Katsnelson
,
M. I.
,
Dryfe
,
R. A. W.
,
Wu
,
H. A.
, and
Geim
,
A. K.
,
2014
, “
Proton Transport Through One-Atom-Thick Crystals
,”
Nature
,
516
(
7530
), pp.
227
230
.
53.
Grosse Austing
,
J.
,
Kirchner
,
C. N.
,
Komsiyska
,
L.
, and
Wittstock
,
G.
,
2016
, “
Layer-by-Layer Modification of Nafion Membranes for Increased Lifetime and Efficiency of Vanadium/Air Redox Flow Batteries
,”
J. Membr. Sci.
,
510
, pp.
259
269
.
54.
Ma
,
J.
,
Wang
,
S.
,
Peng
,
J.
,
Yuan
,
J.
,
Yu
,
C.
,
Li
,
J.
,
Ju
,
X.
, and
Zhai
,
M.
,
2013
, “
Covalently Incorporating a Cationic Charged Layer Onto Nafion Membrane by Radiation-Induced Graft Copolymerization to Reduce Vanadium Ion Crossover
,”
Eur. Polym. J.
,
49
(
7
), pp.
1832
1840
.
55.
Mortensen
,
K.
,
Gasser
,
U.
,
Alkan
,
G. S.
, and
Scherer
,
G. G.
,
2008
, “
Structural Characterization of Radiation-Grafted Block Copolymer Films, Using SANS Technique
,”
J. Polym. Sci.
,
46
(
16
), pp.
1660
1668
.
56.
Nibel
,
O.
,
Schmidt
,
T. J.
, and
Gubler
,
L.
,
2016
, “
Bifunctional Ion-Conducting Polymer Electrolyte for the Vanadium Redox Flow Battery With High Selectivity
,”
J. Electrochem. Soc.
,
163
(
13
), pp.
A2563
A2570
.
57.
Nibel
,
O.
,
Bon
,
M.
,
Agiorousis
,
M. L.
,
Laino
,
T.
, and
Gubler
,
L.
,
2017
, “
Unraveling the Interaction Mechanism Between Amidoxime Groups and Vanadium Ions at Various pH Conditions
,”
J. Phys. Chem. C
,
121
(
12
), pp.
6436
6445
.
58.
Chen
,
D.
,
Hickner
,
M. A.
,
Agar
,
E.
, and
Kumbur
,
E. C.
,
2013
, “
Selective Anion Exchange Membranes for High Coulombic Efficiency Vanadium Redox Flow Batteries
,”
Electrochem. Commun.
,
26
, pp.
37
40
.
59.
Yun
,
S.
,
Parrondo
,
J.
, and
Ramani
,
V.
,
2015
, “
A Vanadium–Cerium Redox Flow Battery With an Anion-Exchange Membrane Separator
,”
ChemPlusChem
,
80
(
2
), pp.
412
421
.
60.
Marino
,
M. G.
, and
Kreuer
,
K. D.
,
2015
, “
Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids
,”
ChemSusChem
,
8
(
3
), pp.
513
523
.
61.
Merle
,
G.
,
Wessling
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Anion Exchange Membranes for Alkaline Fuel Cells: A Review
,”
J. Membr. Sci.
,
377
(1–2), pp.
1
35
.
62.
Zhang
,
B.
,
Zhang
,
E.
,
Wang
,
G.
,
Yu
,
P.
,
Zhao
,
Q.
, and
Yao
,
F.
,
2015
, “
Poly(Phenyl Sulfone) Anion Exchange Membranes With Pyridinium Groups for Vanadium Redox Flow Battery Applications
,”
J. Power Sources
,
282
, pp.
328
334
.
63.
Xu
,
W.
,
Zhao
,
Y.
,
Yuan
,
Z.
,
Li
,
X.
,
Zhang
,
H.
, and
Vankelecom
,
I. F. J.
,
2015
, “
Highly Stable Anion Exchange Membranes With Internal Cross-Linking Networks
,”
Adv. Funct. Mater.
,
25
(
17
), pp.
2583
2589
.
64.
Zeng
,
L.
,
Zhao
,
T. S.
,
Wei
,
L.
,
Zeng
,
Y. K.
, and
Zhang
,
Z. H.
,
2016
, “
Highly Stable Pyridinium-Functionalized Cross-Linked Anion Exchange Membranes for All Vanadium Redox Flow Batteries
,”
J. Power Sources
,
331
, pp.
452
461
.
65.
Lu
,
D.
,
Wen
,
L.
,
Nie
,
F.
, and
Xue
,
L.
,
2016
, “
Synthesis and Investigation of Imidazolium Functionalized Poly(Arylene Ether Sulfone)s as Anion Exchange Membranes for All-Vanadium Redox Flow Batteries
,”
RSC Adv.
,
6
(
8
), pp.
6029
6037
.
66.
Arges
,
C. G.
, and
Ramani
,
V.
,
2013
, “
Two-Dimensional NMR Spectroscopy Reveals Cation-Triggered Backbone Degradation in Polysulfone-Based Anion Exchange Membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
7
), pp.
2490
2495
.
67.
Yuan
,
Z.
,
Li
,
X.
,
Zhao
,
Y.
, and
Zhang
,
H.
,
2015
, “
Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery
,”
ACS Appl. Mater. Interfaces
,
7
(
34
), pp.
19446
19454
.
68.
Zhang
,
B.
,
Zhang
,
S.
,
Weng
,
Z.
,
Wang
,
G.
,
Zhang
,
E.
,
Yu
,
P.
,
Chen
,
X.
, and
Wang
,
X.
,
2016
, “
Quaternized Adamantane-Containing Poly(Aryl Ether Ketone) Anion Exchange Membranes for Vanadium Redox Flow Battery Applications
,”
J. Power Sources
,
325
, pp.
801
807
.
69.
Sun
,
C. N.
,
Tang
,
Z.
,
Belcher
,
C.
,
Zawodzinski
,
T. A.
, and
Fujimoto
,
C.
,
2014
, “
Evaluation of Diels–Alder Poly(Phenylene) Anion Exchange Membranes in All-Vanadium Redox Flow Batteries
,”
Electrochem. Commun.
,
43
, pp.
63
66
.
70.
Pezeshki
,
A. M.
,
Tang
,
Z. J.
,
Fujimoto
,
C.
,
Sun
,
C. N.
,
Mench
,
M. M.
, and
Zawodzinski
,
T. A.
,
2016
, “
Full Cell Study of Diels Alder Poly(Phenylene) Anion and Cation Exchange Membranes in Vanadium Redox Flow Batteries
,”
J. Electrochem. Soc.
,
163
(1), pp.
A5154
A5162
.
71.
Small
,
L. J.
,
Pratt
,
H. D.
, III
,
Fujimoto
,
C. H.
, and
Anderson
,
T. M.
,
2016
, “
Diels Alder Polyphenylene Anion Exchange Membrane for Nonaqueous Redox Flow Batteries
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5106
A5111
.
72.
Yun
,
S.
,
Parrondo
,
J.
, and
Ramani
,
V.
,
2016
, “
Composite Anion Exchange Membranes Based on Quaternized Cardo-Poly(Etherketone) and Quaternized Inorganic Fillers for Vanadium Redox Flow Battery Applications
,”
Int. J. Hydrogen Energy
,
41
(
25
), pp.
10766
10775
.
73.
Li
,
Q.
,
Jensen
,
J. O.
,
Savinell
,
R. F.
, and
Bjerrum
,
N. J.
,
2009
, “
High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells
,”
Prog. Polym. Sci.
,
34
(
5
), pp.
449
477
.
74.
Asensio
,
J. A.
,
Sánchez
,
E. M.
, and
Gómez-Romero
,
P.
,
2010
, “
Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest
,”
Chem. Soc. Rev.
,
39
(
8
), pp.
3210
3239
.
75.
Eberhardt
,
S. H.
,
Toulec
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
,
Büchi
,
F. N.
, and
Schmidt
,
T. J.
,
2015
, “
Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (re)Distribution
,”
J. Electrochem. Soc.
,
162
(
3
), pp.
F310
F316
.
76.
Zhou
,
X. L.
,
Zhao
,
T. S.
,
An
,
L.
,
Wei
,
L.
, and
Zhang
,
C.
,
2015
, “
The Use of Polybenzimidazole Membranes in Vanadium Redox Flow Batteries Leading to Increased Coulombic Efficiency and Cycling Performance
,”
Electrochim. Acta
,
153
, pp.
492
498
.
77.
Jang
,
J. K.
,
Kim
,
T. H.
,
Yoon
,
S. J.
,
Lee
,
J. Y.
,
Lee
,
J. C.
, and
Hong
,
Y. T.
,
2016
, “
Highly Proton Conductive, Dense Polybenzimidazole Membranes With Low Permeability to Vanadium and Enhanced H2SO4 Absorption Capability for Use in Vanadium Redox Flow Batteries
,”
J. Mater. Chem. A
,
4
(
37
), pp.
14342
14355
.
78.
Singh
,
B.
,
Duong
,
N. M. H.
,
Henkensmeier
,
D.
,
Jang
,
J. H.
,
Kim
,
H. J.
,
Han
,
J.
, and
Nam
,
S. W.
,
2017
, “
Influence of Different Side-Groups and Cross-Links on Phosphoric Acid Doped Radel-Based Polysulfone Membranes for High Temperature Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
224
, pp.
306
313
.
79.
Xia
,
Z.
,
Ying
,
L.
,
Fang
,
J.
,
Du
,
Y. Y.
,
Zhang
,
W. M.
,
Guo
,
X.
, and
Yin
,
J.
,
2017
, “
Preparation of Covalently Cross-Linked Sulfonated Polybenzimidazole Membranes for Vanadium Redox Flow Battery Applications
,”
J. Membr Sci.
,
525
, pp.
229
239
.
80.
Chen
,
W. F.
,
Lin
,
H. Y.
, and
Dai
,
S. A.
,
2004
, “
Generation and Synthetic Uses of Stable 4-[2-Isopropylidene]-Phenol Carbocation From Bisphenol A
,”
Org. Lett.
,
6
(
14
), pp.
2341
2343
.
81.
Johnson
,
B. C.
,
Yilgör
,
I.
,
Tran
,
C.
,
Iqbal
,
M.
,
Wightman
,
J. P.
,
Lloyd
,
D. R.
, and
McGrath
,
J. E.
,
1984
, “
Synthesis and Characterization of Sulfonated Poly(Arylene Ether Sulfones)
,”
J. Polym. Sci.
,
22
(
3
), pp.
721
737
.
82.
Peng
,
S.
,
Yan
,
X.
,
Zhang
,
D.
,
Wu
,
X.
,
Luo
,
Y.
, and
He
,
G.
,
2016
, “
A H3PO4 Preswelling Strategy to Enhance the Proton Conductivity of a H2SO4-Doped Polybenzimidazole Membrane for Vanadium Flow Batteries
,”
RSC Adv.
,
6
(
28
), pp.
23479
23488
.
83.
Bartolozzi
,
M.
,
1989
, “
Development of Redox Flow Batteries. A Historical Bibliography
,”
J. Power Sources
,
27
(
3
), pp.
219
234
.
84.
Sum
,
E.
, and
Skyllas-Kazacos
,
M.
,
1985
, “
A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications
,”
J. Power Sources
,
15
(2–3), pp.
179
190
.
85.
Zhong
,
S.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Electrochemical Behavior of Vanadium(V)/Vanadium(IV) Redox Couple at Graphite Electrodes
,”
J. Power Sources
,
39
(
1
), pp.
1
9
.
86.
Zhong
,
S.
,
Kazacos
,
M.
,
Burford
,
R. P.
, and
Skyllas-Kazacos
,
M.
,
1991
, “
Fabrication and Activation Studies of Conducting Plastic Composite Electrodes for Redox Cells
,”
J. Power Sources
,
36
(
1
), pp.
29
43
.
87.
Kazacos
,
M.
, and
Skyllas-Kazacos
,
M.
,
1989
, “
Performance Characteristics of Carbon Plastic Electrodes in the All-Vanadium Redox Cell
,”
J. Electrochem. Soc.
,
136
(
9
), pp.
2759
2760
.
88.
Haddadi-Asl
,
V.
,
Kazacos
,
M.
, and
Skyllas-Kazacos
,
M.
,
1995
, “
Conductive Carbon-Polypropylene Composite Electrodes for Vanadium Redox Battery
,”
J. Appl. Electrochem.
,
25
(1), pp.
29
33
.
89.
Haddadi-Asl
,
V.
,
Kazacos
,
M.
, and
Skyllas-Kazacos
,
M.
,
1995
, “
Carbon–Polymer Composite Electrodes for Redox Cells
,”
J. Appl. Polym. Sci.
,
57
(
12
), pp.
1455
1463
.
90.
Radford
,
G. J. W.
,
Cox
,
J.
,
Wills
,
R. G. A.
, and
Walsh
,
F. C.
,
2008
, “
Electrochemical Characterization of Activated Carbon Particles Used in Redox Flow Battery Electrodes
,”
J. Power Sources
,
185
(
2
), pp.
1499
1504
.
91.
Inoue
,
M.
,
Tsuzuki
,
Y.
,
Iizuka
,
Y.
, and
Shimada
,
M.
,
1987
, “
Carbon Fiber Electrode for Redox Flow Battery
,”
J. Electrochem. Soc.
,
134
(
3
), pp.
756
757
.
92.
Kaneko
,
H.
,
Nozaki
,
K.
,
Wada
,
Y.
,
Aoki
,
T.
,
Negishi
,
A.
, and
Kamimoto
,
M.
,
1991
, “
Vanadium Redox Reactions and Carbon Electrodes for Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
36
(
7
), pp.
1191
1196
.
93.
Xi
,
J.
,
Zenghua
,
W.
,
Qiu
,
X.
, and
Chen
,
L.
,
2007
, “
Nafion/SiO2 Hybride Membrane for Vanadium Redox Flow Battery
,”
J. Power Sources
,
166
(
2
), pp.
531
536
.
94.
Mohammadi
,
F.
,
Timbrell
,
P.
,
Zhong
,
S.
,
Padeste
,
C.
, and
Skyllas-Kazacos
,
M.
,
1994
, “
Overcharge in the Vanadium Redox Battery and Changes in Electrical Resistivity and Surface Functionality of Graphite-Felt Electrodes
,”
J. Power Sources
,
52
(
1
), pp.
61
68
.
95.
Shao
,
Y.
,
Wang
,
X.
,
Engelhard
,
M.
,
Wang
,
C.
,
Dai
,
S.
,
Liu
,
J.
,
Yang
,
Z.
, and
Lin
,
Y.
,
2010
, “
Nitrogen-Doped Mesoporous Carbon for Energy Storage in Vanadium Redox Flow Batteries
,”
J. Power Sources
,
195
(
13
), pp.
4375
4379
.
96.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—Part II: Acid Treatments
,”
Electrochim. Acta
,
37
(
13
), pp.
2459
2465
.
97.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—I: Thermal Treatment
,”
Electrochim. Acta
,
37
(
7
), pp.
1253
1260
.
98.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1991
, “
Chemical Modification and Electrochemical Behaviour of Graphite Fibre in Acidic Vanadium Solution
,”
Electrochim. Acta
,
36
(3–4), pp.
513
517
.
99.
Rychcik
,
M.
, and
Skyllas-Kazacos
,
M.
,
1987
, “
Evaluation of Electrode Materials for Vanadium Redox Cell
,”
J. Power Sources
,
19
(
1
), pp.
45
54
.
100.
Zhong
,
S.
,
Padeste
,
C.
,
Kazacos
,
M.
, and
Skyllas-Kazacos
,
M.
,
1993
, “
Comparison of the Physical, Chemical and Electrochemical Properties of Rayon- and Polyacrylonitrile-Based Graphite Felt Electrodes
,”
J. Power Sources
,
45
(
1
), pp.
29
41
.
101.
Kim
,
K. J.
,
Park
,
M. S.
,
Kim
,
Y. J.
,
Kim
,
J. H.
,
Dou
,
S. X.
, and
Skyllas-Kazacos
,
M.
,
2015
, “
A Technology Review of Electrodes and Reaction Mechanisms in Vanadium Redox Flow Batteries
,”
J. Mater. Chem. A
,
3
(
33
), pp.
16913
16933
.
102.
de Leon
,
C. P.
,
Frias-Ferrer
,
A.
,
Gonzalez-Garcia
,
J.
,
Szanto
,
D.
, and
Walsh
,
F.
,
2006
, “
Redox Flow Cells for Energy Conversion
,”
J. Power Sources
,
160
(
1
), pp.
716
732
.
103.
Skyllas-Kazacos
,
M.
,
Chakrabarti
,
M. H.
,
Hajimolana
,
S. A.
,
Mjalli
,
F. S.
, and
Saleem
,
M.
,
2011
, “
Progress in Flow Battery Research and Development
,”
J. Electrochem. Soc.
,
158
(8), pp.
55
79
.
104.
Skyllas-Kazacos
,
M.
,
Rychcik
,
M.
,
Robins
,
R. G.
,
Fane
,
A. G.
, and
Green
,
M. A.
,
1986
, “
New All-Vanadium Redox Flow Cell
,”
J. Electrochem. Soc.
,
133
(
5
), pp.
1057
1058
.
105.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C. W.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
106.
Li
,
W. W.
,
Chu
,
Y. Q.
, and
Ma
,
C. A.
,
2014
, “
Highly Hydroxylated Graphite Felts Used as Electrodes for a Vanadium Redox Flow Battery
,”
Adv. Mater. Res.
,
936
, pp.
471
475
.
107.
Li
,
X. G.
,
Huang
,
K. L.
,
Liu
,
S. Q.
,
Tan
,
N.
, and
Chen
,
L. Q.
,
2007
, “
Characteristics of Graphite Felt Electrode Electrochemically Oxidized for Vanadium Redox Battery Application
,”
Trans. Nonferrous Met. Soc. China
,
17
(
1
), pp.
195
199
.
108.
Tan
,
N.
,
Huang
,
K. L.
,
Liu
,
S. Q.
,
Li
,
X. G.
, and
Chang
,
Z. F.
,
2006
, “
Activation Mechanism Study of Electrochemical Treated Graphite Felt for Vanadium Redox Cell by Electrochemical Impedance Spectrum
,”
Acta Chim. Sin.
,
64
(
6
), pp.
584
588
.
109.
Zhang
,
W.
,
Xi
,
J.
,
Li
,
Z.
,
Zhou
,
H.
,
Liu
,
L.
,
Wu
,
Z.
, and
Qiu
,
X.
,
2013
, “
Electrochemical Activation of Graphite Felt Electrode for VO2+/VO2+ Redox Couple Application
,”
Electrochim. Acta
,
89
, pp.
429
435
.
110.
Wang
,
W. H.
, and
Wang
,
W. D.
,
2007
, “
Investigation of Ir-Modified Carbon Felt as the Positive Electrode of an All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
52
(
24
), pp.
6755
6762
.
111.
Jeong
,
S.
,
Kim
,
S.
, and
Kwon
,
Y.
,
2013
, “
Performance Enhancement in Vanadium Redox Flow Battery Using Platinum-Based Electrocatalyst Synthesized by Polyol Process
,”
Electrochim. Acta
,
114
, pp.
439
447
.
112.
González
,
Z.
,
Sánchez
,
A.
,
Blanco
,
C.
,
Granda
,
M.
,
Menéndez
,
R.
, and
Santanmaría
,
R.
,
2011
, “
Enhanced Performance of a Bi-Modified Graphite Felt as the Positive Electrode of a Vanadium Redox Flow Battery
,”
Electrochem. Commun.
,
13
(
12
), pp.
1379
1382
.
113.
Suárez
,
D. J.
,
González
,
Z.
,
Blanco
,
C.
,
Granda
,
M.
,
Menéndez
,
R.
, and
Santamaría
,
R.
,
2014
, “
Graphite Felt Modified With Bismuth Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery
,”
ChemSusChem
,
7
(
3
), pp.
914
918
.
114.
Kim
,
K. J.
,
Park
,
M. S.
,
Kim
,
J. H.
,
Hwang
,
U.
,
Lee
,
N. J.
,
Jeong
,
G.
, and
Kim
,
Y. J.
,
2012
, “
Novel Catalytic Effects of Mn3O4 for All Vanadium Redox Flow Batteries
,”
Chem. Commun.
,
48
(
44
), pp.
5455
5457
.
115.
Li
,
B.
,
Gu
,
M.
,
Nie
,
Z.
,
Wei
,
X. L.
,
Wang
,
C. M.
,
Sprenkle
,
V.
, and
Wang
,
W.
,
2014
, “
Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery
,”
Nano Lett.
,
14
(
1
), pp.
158
165
.
116.
Tseng
,
T. M.
,
Huang
,
R. H.
,
Huang
,
G. Y.
,
Hsueh
,
K. L.
, and
Shieu
,
F. S.
,
2013
, “
Improvement of Titanium Dioxide Addition on Carbon Black Composite for Negative Electrode in Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1269
A1275
.
117.
Wu
,
X. X.
,
Xu
,
H. F.
,
Lu
,
L.
,
Zhao
,
H.
,
Fu
,
J.
,
Shen
,
Y.
,
Xu
,
P. C.
, and
Dong
,
Y. M.
,
2014
, “
PbO2-Modified Graphite Felt as the Positive Electrode for an All-Vanadium Redox Flow Battery
,”
J. Power Sources
,
250
, pp.
274
278
.
118.
Zhou
,
H.
,
Xi
,
J. G.
,
Li
,
Z. H.
,
Zhang
,
Z. G.
,
Yu
,
L. H.
,
Liu
,
L.
,
Qiu
,
X. P.
, and
Chen
,
L. Q.
,
2014
, “
CeO2 Decorated Graphite Felt as a High-Performance Electrode for Vanadium Redox Flow Batteries
,”
RSC Adv.
,
4
(
106
), pp.
61912
61918
.
119.
Wang
,
X.
,
Li
,
W. Z.
,
Chen
,
Z. W.
,
Waje
,
M. H.
, and
Yan
,
Y. S.
,
2006
, “
Durability Investigation of Carbon Nanotube as Catalyst Support for Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
158
(
1
), pp.
154
159
.
120.
Jha
,
N.
,
Leela
,
A.
,
Reddy
,
M.
,
Shaijumoon
,
M. M.
,
Rajalakshmi
,
N.
, and
Ramaprabhu
,
S.
,
2008
, “
Pt–Ru/Multi-Walled Carbon Nanotubes as Electrocatalysts for Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
33
(
1
), pp.
427
433
.
121.
Mohanareddy
,
A.
,
Rajalakshmi
,
N.
, and
Ramaprabhu
,
S.
,
2008
, “
Cobalt-Polypyrrole-Multiwalled Carbon Nanotube Catalysts for Hydrogen and Alcohol Fuel Cells
,”
Carbon
,
46
(
1
), pp.
2
11
.
122.
Saha
,
M. S.
,
Li
,
R.
, and
Sun
,
X.
,
2008
, “
High Loading and Monodispersed Pt Nanoparticles on Multiwalled Carbon Nanotubes for High Performance Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
177
(
2
), pp.
314
322
.
123.
Zhu
,
H. Q.
,
Zhang
,
Y. M.
,
Yue
,
L.
,
Li
,
W. S.
,
Li
,
G. L.
,
Shu
,
D.
, and
Chen
,
H. Y.
,
2008
, “
Graphite–Carbon Nanotube Composite Electrodes for All Vanadium Redox Flow Battery
,”
J. Power Sources
,
184
(
2
), pp.
637
640
.
124.
Li
,
W. Y.
,
Liu
,
J. G.
, and
Yan
,
C. W.
,
2011
, “
Multi-Walled Carbon Nanotubes Used as an Electrode Reaction Catalyst for VO2+/VO2+ for a Vanadium Redox Flow Battery
,”
Carbon
,
49
(
11
), pp.
3463
3470
.
125.
Maldonado
,
S.
, and
Stevenson
,
K. J.
,
2005
, “
Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes
,”
J. Phys. Chem. B
,
109
(
10
), pp.
4707
4716
.
126.
Shao
,
Y.
,
Sui
,
J.
,
Yin
,
G.
, and
Gao
,
Y.
,
2008
, “
Nitrogen-Doped Carbon Nanostructures and Their Composites as Catalytic Materials for Proton Exchange Membrane Fuel Cell
,”
Appl. Catal., B
,
79
(
1
), pp.
89
99
.
127.
Gong
,
K.
,
Du
,
F.
,
Xia
,
Z.
,
Durstock
,
M.
, and
Dai
,
L.
,
2009
, “
Nitrogen-Doped Carbon Nanotube Arrays With High Electrocatalytic Activity for Oxygen Reduction
,”
Science
,
323
(
5915
), pp.
760
764
.
128.
Sidik
,
R. A.
,
Anderson
,
A. B.
,
Subramanian
,
N. P.
,
Kumaraguru
,
S. P.
, and
Popov
,
B. N.
,
2006
, “
O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory
,”
J. Phys. Chem. B
,
110
(
4
), pp.
1787
1793
.
129.
Wu
,
G.
,
Li
,
D.
,
Dai
,
C.
,
Wang
,
D.
, and
Li
,
N.
,
2008
, “
Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell−Core Nanostructured Carbon for Methanol Electrooxidation
,”
Langmuir
,
24
(
7
), pp.
3566
3575
.
130.
Saha
,
M. S.
,
Li
,
R.
,
Sun
,
X.
, and
Ye
,
S.
,
2009
, “
3-D Composite Electrodes for High Performance PEM Fuel Cells Composed of Pt Supported on Nitrogen-Doped Carbon Nanotubes Grown on Carbon Paper
,”
Electrochem. Commun.
,
11
(
2
), pp.
438
441
.
131.
Shi
,
L.
,
Gao
,
Q.
, and
Wu
,
Y.
,
2009
, “
High Performance Oxide Functionalized Nitrogen-Doped Mesocellular Carbon Foam for Biosensor Construction
,”
Electroanalysis
,
21
(
6
), pp.
715
722
.
132.
Wo
,
T.
,
Huang
,
K. L.
,
Liu
,
S. Q.
,
Zhung
,
S. X.
,
Fang
,
D.
,
Li
,
S.
,
Lu
,
D.
, and
Su
,
A. Q.
,
2012
, “
Hydrothermal Ammoniated Treatment of PAN-Graphite Felt for Vanadium Redox Flow Battery
,”
J. Solid State Electrochem.
,
16
(2), pp.
579
585
.
133.
Wang
,
S. G.
,
Zhao
,
X. S.
,
Cochell
,
T.
, and
Manthiram
,
A.
,
2012
, “
Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries
,”
J. Phys. Chem. Lett.
,
3
(
16
), pp.
2164
2167
.
134.
Jin
,
J. T.
,
Fu
,
X. G.
,
Liu
,
Q.
,
Liu
,
Y. R.
,
Wei
,
Z. Y.
,
Niu
,
K. X.
, and
Zhang
,
J. Y.
,
2013
, “
Identifying the Active Site in Nitrogen-Doped Graphene for the VO2+/VO2+ Redox Reaction
,”
ACS Nano
,
7
(
6
), pp.
4764
4773
.
135.
Park
,
M. J.
,
Ryu
,
J. C.
,
Kim
,
Y. S.
, and
Cho
,
J.
,
2014
, “
Corn Protein-Derived Nitrogen-Doped Carbon Materials With Oxygen-Rich Functional Groups: A Highly Efficient Electrocatalyst for All-Vanadium Redox Flow Batteries
,”
Energy Environ. Sci.
,
7
(
11
), pp.
3727
3735
.
136.
Ulaganathan
,
M.
,
Jain
,
A.
,
Aravindan
,
V.
,
Jayaraman
,
S.
,
Ling
,
W. C.
,
Lim
,
T. M.
,
Srinivasan
,
M. P.
,
Yan
,
Q.
, and
Madhavi
,
S.
,
2015
, “
Bio-Mass Derived Mesoporous Carbon as Superior Electrode in All Vanadium Redox Flow Battery With Multicouple Reactions
,”
J. Power Sources
,
274
, pp.
846
850
.
137.
Park
,
J. J.
,
Park
,
J. H.
,
Park
,
O. O.
, and
Yang
,
J. H.
,
2016
, “
Highly Porous Graphenated Graphite Felt Electrodes With Catalytic Defects for High-Performance Vanadium Redox Flow Batteries Produced Via NiO/Ni Redox Reactions
,”
Carbon
,
110
, pp.
17
26
.
138.
González
,
Z.
,
Flox
,
C.
,
Blanco
,
C.
,
Granda
,
M.
,
Morante
,
J. R.
,
Menéndez
,
R.
, and
Santanmaría
,
R.
,
2017
, “
Outstanding Electrochemical Performance of a Graphene-Modified Graphite Felt for Vanadium Redox Flow Battery Application
,”
J. Power Sources
,
338
, pp.
155
162
.
139.
Blasi
,
A. D.
,
Busaccaa
,
C.
,
Blasia
,
O. D.
,
Briguglioa
,
N.
,
Squadritoa
,
G.
, and
Antonuccia
,
V.
,
2017
, “
Synthesis of Flexible Electrodes Based on Electrospun Carbon Nanofibers With Mn3O4 Nanoparticles for Vanadium Redox Flow Battery Application
,”
Appl. Energy
,
190
, pp.
165
171
.
140.
Busacca
,
C.
,
Blasi
,
O. D.
,
Briguglio
,
N.
,
Ferraro
,
M.
,
Antonucci
,
V.
, and
Blasi
,
A. D.
,
2017
, “
Electrochemical Performance Investigation of Electrospun Urchin-Like V2O3-CNF Composite Nanostructure for Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
230
, pp.
174
180
.
141.
Bhattarai
,
A.
,
Wai
,
N.
,
Schweiss
,
R.
,
Whitehead
,
A.
,
Lim
,
T. M.
, and
Hug
,
H. H.
,
2017
, “
Advanced Porous Electrodes With Flow Channels for Vanadium Redox Flow Battery
,”
J. Power Sources
,
341
, pp.
83
90
.
142.
Winsberg
,
J.
,
Hagemann
,
T.
,
Janoschka
,
T.
,
Hager
,
M.
, and
Schubert
,
U. S.
,
2017
, “
Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
,”
Angew. Chem. Int. Ed.
,
56
(
3
), pp.
686
711
.
143.
Jeftic
,
L.
, and
Manning
,
G.
,
1970
, “
A Survey on the Electrochemical Reduction of Quinones
,”
J. Electroanal. Chem.
,
26
(2–3), pp.
195
200
.
144.
Ji
,
X.
,
Banks
,
C. E.
,
Silvester
,
D. S.
,
Wain
,
A. J.
, and
Compton
,
R. G.
,
2007
, “
Electrode Kinetic Studies of the Hydroquinone-Benzoquinone System and the Reaction Between Hydroquinone and Ammonia in Propylene Carbonate: Application to the Indirect Electroanalytical Sensing of Ammonia
,”
J. Phys. Chem. C
,
111
(
3
), pp.
1496
1504
.
145.
René
,
A.
, and
Evans
,
D. H.
,
2012
, “
Electrochemical Reduction of Some o-Quinone Anion Radicals: Why Is the Current Intensity So Small?
,”
J. Phys. Chem. C
,
116
(
27
), pp.
14454
14460
.
146.
Xu
,
Y.
,
Wen
,
Y.
,
Cheng
,
J.
,
Cao
,
G.
, and
Yang
,
Y.
,
2009
, “
Study on a Single Flow Acid Cd-Chloranil Battery
,”
Electrochem. Commun.
,
11
(
7
), pp.
1422
1424
.
147.
Xu
,
Y.
,
Wen
,
Y.
,
Cheng
,
J.
,
Cao
,
G.
, and
Yang
,
Y.
,
2010
, “
A Study of Tiron in Aqueous Solutions for Redox Flow Battery Application
,”
Electrochim. Acta
,
55
(
3
), pp.
715
720
.
148.
Papouchado
,
L.
,
Petrie
,
G.
, and
Adams
,
R. N.
,
1972
, “
Anodic Oxidation Pathways of Phenolic Compounds—Part I: Anodic Hydroxylation Reactions
,”
J. Electroanal. Chem.
,
38
(
2
), pp.
389
395
.
149.
Hoober-Burkhardt
,
L.
,
Krishnamoorthy
,
S.
,
Yang
,
B.
,
Murali
,
A.
,
Nirmalchandar
,
A.
,
Surya Prakash
,
G. K.
, and
Narayanan
,
S. R.
,
2017
, “
A New Michael-Reaction-Resistant Benzoquinone for Aqueous Organic Redox Flow Batteries
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A600
A607
.
150.
Yang
,
B.
,
Hoober-Burkhardt
,
L.
,
Krishnamoorthy
,
S.
,
Murali
,
A.
,
Surya Prakash
,
G. K.
, and
Narayanan
,
S. R.
,
2016
, “
High-Performance Aqueous Organic Flow Battery With Quinone-Based Redox Couples at Both Electrodes
,”
J. Electrochem. Soc.
,
163
(
7
), pp.
A1442
A1449
.
151.
Yang
,
B.
,
Hoober-Burkhardt
,
L.
,
Wang
,
F.
,
Surya Prakash
,
G. K.
, and
Narayanan
,
S. R.
,
2014
, “
An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
,”
J. Electrochem. Soc.
,
161
(
9
), pp.
A1371
A1380
.
152.
Song
,
Z.
,
Zhan
,
H.
, and
Zhou
,
Y.
,
2009
, “
Anthraquinone Based Polymer as High Performance Cathode Material for Rechargeable Lithium Batteries
,”
Chem. Commun.
,
2009
(4), pp.
448
450
.
153.
Zhao
,
L.
,
Wang
,
W.
,
Wang
,
A.
,
Yu
,
Z.
,
Chen
,
S.
, and
Yang
,
Y.
,
2011
, “
A MC/AQ Parasitic Composite as Cathode Material for Lithium Battery
,”
J. Electrochem. Soc.
,
158
(9), pp.
A991
A996
.
154.
Guin
,
P. S.
,
Das
,
S.
, and
Mandal
,
P. C.
,
2011
, “
Electrochemical Reduction of Quinones in Different Media: A Review
,”
Int. J. Electrochem.
,
2011
, p. 816202.
155.
Er
,
S.
,
Suh
,
C.
,
Marshak
,
M. P.
, and
Aspuru-Guzik
,
A.
,
2015
, “
Computational Design of Molecules for All-Quinone Redox Flow Battery
,”
Chem. Sci.
,
6
(
2
), pp.
885
893
.
156.
Wang
,
W.
,
Xu
,
W.
,
Cosimbescu
,
L.
,
Choi
,
D.
,
Li
,
L.
, and
Yang
,
Z.
,
2012
, “
Anthraquinone With Tailored Structure for a Nonaqueous Metal-Organic Redox Flow Battery
,”
Chem. Commun.
,
48
(
53
), pp.
6669
6671
.
157.
Huskinson
,
B.
,
Marshak
,
M. P.
,
Suh
,
C.
,
Er
,
S.
,
Gerhardt
,
M. R.
,
Galvin
,
C. J.
,
Chen
,
X.
,
Aspuru-Guzik
,
A.
,
Gordon
,
R. G.
, and
Aziz
,
M. J.
,
2014
, “
A Metal-Free Organic-Inorganic Aqueous Flow Battery
,”
Nature
,
505
(
7482
), pp.
195
198
.
158.
Zhang
,
S.
,
Li
,
X.
, and
Chu
,
D.
,
2016
, “
An Organic Electroactive Material for Flow Batteries
,”
Electrochim. Acta
,
190
, pp.
737
743
.
159.
Lin
,
K.
,
Chen
,
Q.
,
Gerhardt
,
M. R.
,
Tong
,
L.
,
Kim
,
S. B.
,
Eisenach
,
L.
,
Valle
,
A. W.
,
Hardee
,
D.
,
Gordon
,
R. G.
,
Aziz
,
M. J.
, and
Marshak
,
M. P.
,
2015
, “
Alkaline Quinone Flow Battery
,”
Science
,
349
(
6255
), pp.
1529
1532
.
160.
Michaelis
,
L.
, and
Hill
,
E. S.
,
1933
, “
The Viologen Indicators
,”
J. Gen. Physiol.
,
16
(
6
), pp.
859
873
.
161.
Bird
,
C. L.
, and
Kuhn
,
A. T.
,
1981
, “
Electrochemistry of the Viologens
,”
Chem. Soc. Rev.
,
10
(
1
), pp.
49
82
.
162.
Farrington
,
J. A.
,
Ledwith
,
A.
, and
Stam
,
M. F.
,
1969
, “
Cation-Radicals: Oxidation of Methoxide ion With 1,1′-Dimethyl-4,4′-Bipyriylium Dichloride (Paraquat Dichloride)
,”
J. Chem. Soc. D
,
6
, p.
259
.
163.
Ito
,
M.
, and
Kuwana
,
T.
,
1971
, “
Spectroelectrochemical Study of Indirect Reduction of Triphosphopyridine Nucleotide—I: Methyl Viologen, Ferredoxin-TPN-Reductase and TPN
,”
J. Electroanal. Chem.
,
32
(
3
), pp.
415
425
.
164.
Haley
,
T. J.
,
1979
, “
Review of the Toxicology of Paraquat (1,1′-Dimethyl-4,4′-Bipyridinium Chloride)
,”
Clin. Toxicol.
,
14
(
1
), pp.
1
46
.
165.
Liu
,
T.
,
Wie
,
X.
,
Nie
,
Z.
,
Sprenkle
,
V.
, and
Wang
,
W.
,
2016
, “
A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
,”
Adv. Energy Mater.
,
6
(
3
), p.
1501449
.
166.
Janoschka
,
T.
,
Martin
,
N.
,
Hager
,
M. D.
, and
Schubert
,
U. S.
,
2016
, “
An Aqueous Redox-Flow Battery With High Capacity and Power: The TEMPTMA/MV System
,”
Angew. Chem. Int. Ed.
,
55
(
46
), pp.
14427
14430
.
167.
Janoschka
,
T.
,
Hager
,
M. D.
, and
Schubert
,
U. S.
,
2012
, “
Powering Up the Future: Radical Polymers for Battery Applications
,”
Adv. Mater.
,
24
(
48
), pp.
6397
6409
.
168.
Wei
,
X.
,
Xu
,
W.
,
Vijayakumar
,
M.
,
Cosimbescu
,
L.
,
Liu
,
T.
,
Sprenkle
,
V.
, and
Wang
,
W.
,
2014
, “
TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
,”
Adv. Mater.
,
26
(
45
), pp.
7649
7653
.
169.
Takechi
,
K.
,
Kato
,
Y.
, and
Hase
,
Y.
,
2015
, “
A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries
,”
Adv. Mater.
,
27
(
15
), pp.
2501
2506
.
170.
Lin
,
K.
,
Gómez-Bombarelli
,
R.
,
Beh
,
E. S.
,
Tong
,
L.
,
Chen
,
Q.
,
Valle
,
A.
,
Aspuru-Guzik
,
A.
,
Aziz
,
M. J.
, and
Gordon
,
R. G.
,
2016
, “
A Redox-Flow Battery With an Alloxazinebased Organic Electrolyte
,”
Nature Energy
,
1
(
9
), p.
16102
.
171.
Janoschka
,
T.
,
Morgenstern
,
S.
,
Hiller
,
H.
,
Friebe
,
C.
,
Wolkersdörfer
,
K.
,
Häupler
,
B.
,
Hager
,
M. D.
, and
Schubert
,
U. S.
,
2015
, “
Synthesis and Characterization of TEMPO- and Viologen-Polymers for Water-Based Redox-Flow Batteries
,”
Polym. Chem.
,
6
(
45
), pp.
7801
7811
.
172.
Winsberg
,
J.
,
Muench
,
S.
,
Hagemann
,
T.
,
Morgenstern
,
S.
,
Janoschka
,
T.
,
Billing
,
M.
,
Schacher
,
F. H.
,
Hauffman
,
G.
,
Gohy
,
J. F.
,
Hoeppener
,
S.
,
Hager
,
M. D.
, and
Schubert
,
U. S.
,
2016
, “
Polymer/Zinc Hybrid-Flow Battery Using Block Copolymer Micelles Featuring a TEMPO Corona as Catholyte
,”
Polym. Chem.
,
7
(
9
), pp.
1711
1718
.
173.
Winsberg
,
J.
,
Hagemann
,
T.
,
Muench
,
S.
,
Friebe
,
C.
,
Häupler
,
B.
,
Janoschka
,
T.
,
Morgenstern
,
S.
,
Hager
,
M. D.
, and
Schubert
,
U. S.
,
2016
, “
Poly(Boron-Dipyrromethene): A Redox-Active Polymer Class for Polymer Redox-Flow Batteries
,”
Chem. Mater.
,
28
(
10
), pp.
3401
3405
.
174.
Cabana
,
J.
,
Monconduit
,
L.
,
Larcher
,
D.
, and
Palacin
,
M. R.
,
2010
, “
Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
,”
Adv. Mater.
,
22
(
35
), pp.
E170
E192
.
175.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
176.
Zhang
,
H.
,
Mao
,
C.
,
Li
,
J.
, and
Chen
,
R.
,
2017
, “
Advances in Electrode Materials for Li-Based Rechargeable Batteries
,”
RSC Adv.
,
7
(54), pp. 33789–33811.
177.
Yamada
,
A.
,
Chung
,
S.-C.
, and
Hinokuma
,
K.
,
2001
, “
Optimized LiFePO4 for Lithium Battery Cathodes
,”
J. Electrochem. Soc.
,
148
(
3
), pp.
A224
A229
.
178.
Yoo
,
E.
,
Kim
,
J.
,
Hosono
,
E.
,
Zhou
,
H.-S.
,
Kudo
,
T.
, and
Honma
,
I.
,
2008
, “
Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries
,”
Nano Lett.
,
8
(
8
), pp.
2277
2282
.
179.
Ventosa
,
E.
,
Zampardi
,
G.
,
Flox
,
C.
,
La Mantia
,
F.
,
Schuhmann
,
W.
, and
Morante
,
J.
,
2015
, “
Solid Electrolyte Interphase in Semi-Solid Flow Batteries: A Wolf in Sheep's Clothing
,”
Chem. Commun.
,
51
(
81
), pp.
14973
14976
.
180.
Biendicho
,
J. J.
,
Flox
,
C.
,
Sanz
,
L.
, and
Morante
,
J. R.
,
2016
, “
Static and Dynamic Studies on LiNi1/3Co1/3Mn1/3O2‐Based Suspensions for Semi–Solid Flow Batteries
,”
ChemSusChem
,
9
(
15
), pp.
1938
1944
.
181.
Wei
,
T. S.
,
Fan
,
F. Y.
,
Helal
,
A.
,
Smith
,
K. C.
,
McKinley
,
G. H.
,
Chiang
,
Y. M.
, and
Lewis
,
J. A.
,
2015
, “
Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells With High Energy Density, Fast Charge Transport, and Low-Dissipation Flow
,”
Adv. Energy Mater.
,
5
(
15
), p.
1500535
.
182.
Qi
,
Z.
,
Liu
,
A. L.
, and
Koenig
,
G. M.
,
2017
, “
Carbon-Free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries
,”
Electrochim. Acta
,
228
, pp.
91
99
.
183.
Qi
,
Z.
, and
Koenig
,
G. M.
,
2016
, “
A Carbon-Free Lithium-Ion Solid Dispersion Redox Couple With Low Viscosity for Redox Flow Batteries
,”
J. Power Sources
,
323
, pp.
97
106
.
184.
Li
,
Z.
,
Smith
,
K. C.
,
Dong
,
Y.
,
Baram
,
N.
,
Fan
,
F. Y.
,
Xie
,
J.
,
Limthongkul
,
P.
,
Carter
,
W. C.
, and
Chiang
,
Y.-M.
,
2013
, “
Aqueous Semi-Solid Flow Cell: Demonstration and Analysis
,”
Phys. Chem. Chem. Phys.
,
15
(
38
), pp.
15833
15839
.
185.
Ventosa
,
E.
,
Buchholz
,
D.
,
Klink
,
S.
,
Flox
,
C.
,
Chagas
,
L. G.
,
Vaalma
,
C.
,
Schuhmann
,
W.
,
Passerini
,
S.
, and
Morante
,
J. R.
,
2015
, “
Non-Aqueous Semi-Solid Flow Battery Based on Na-Ion Chemistry. P2-Type NaxNi0.22Co0.11Mn0.66O2–NaTi2(PO4)3
,”
Chem. Commun.
,
51
(
34
), pp.
7298
7301
.
186.
Fang
,
Y.
,
Zhang
,
J.
,
Xiao
,
L.
,
Ai
,
X.
,
Cao
,
Y.
, and
Yang
,
H.
,
2017
, “
Phosphate Framework Electrode Materials for Sodium Ion Batteries
,”
Adv. Sci.
,
4
(
5
), p.
1600392
.
187.
Ding
,
Y.
,
Zhao
,
Y.
,
Li
,
Y.
,
Goodenough
,
J. B.
, and
Yu
,
G.
,
2017
, “
A High-Performance All-Metallocene-Based, Non-Aqueous Redox Flow Battery
,”
Energy Environ. Sci.
,
10
(2), pp.
491
497
.
188.
Pan
,
F.
,
Huang
,
Q.
,
Huang
,
H.
, and
Wang
,
Q.
,
2016
, “
High-Energy Density Redox Flow Lithium Battery With Unprecedented Voltage Efficiency
,”
Chem. Mater.
,
28
(
7
), pp.
2052
2057
.
189.
Huang
,
Q.
,
Li
,
H.
,
Grätzel
,
M.
, and
Wang
,
Q.
,
2013
, “
Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery
,”
Phys. Chem. Chem. Phys.
,
15
(
6
), pp.
1793
1797
.
190.
Ding
,
Y.
,
Zhao
,
Y.
, and
Yu
,
G.
,
2015
, “
A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery
,”
Nano Lett.
,
15
(
6
), pp.
4108
4113
.
191.
Tomai
,
T.
,
Saito
,
H.
, and
Honma
,
I.
,
2017
, “
High-Energy-Density Electrochemical Flow Capacitors Containing Quinone Derivatives Impregnated in Nanoporous Carbon Beads
,”
J. Mater. Chem. A
,
5
(
5
), pp.
2188
2194
.
192.
Yang
,
Y.
,
Zheng
,
G.
, and
Cui
,
Y.
,
2013
, “
A Membrane-Free Lithium/Polysulfide Semi-Liquid Battery for Large-Scale Energy Storage
,”
Energy Environ. Sci.
,
6
(
5
), pp.
1552
1558
.
193.
Chen
,
H.
,
Zou
,
Q.
,
Liang
,
Z.
,
Liu
,
H.
,
Li
,
Q.
, and
Lu
,
Y.-C.
,
2015
, “
Sulphur-Impregnated Flow Cathode to Enable High-Energy-Density Lithium Flow Batteries
,”
Nat. Commun.
,
6
, p.
5877
.
194.
Chen
,
H.
, and
Lu
,
Y. C.
,
2016
, “
A High‐Energy‐Density Multiple Redox Semi‐Solid‐Liquid Flow Battery
,”
Adv. Energy Mater.
,
6
(
8
), p.
1502183
.
195.
Hamelet
,
S.
,
Larcher
,
D.
,
Dupont
,
L.
, and
Tarascon
,
J.-M.
,
2013
, “
Silicon-Based Non Aqueous Anolyte for Li Redox-Flow Batteries
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
A516
A520
.
196.
Brunini
,
V. E.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2012
, “
Modeling the Hydrodynamic and Electrochemical Efficiency of Semi-Solid Flow Batteries
,”
Electrochim. Acta
,
69
, pp.
301
307
.
197.
Johnson
,
D.
, and
Reid
,
M.
,
1985
, “
Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half‐Cell in the Iron‐Chromium Redox Energy Storage System
,”
J. Electrochem. Soc.
,
132
(
5
), pp.
1058
1062
.
198.
Giner
,
J.
,
Swette
,
L.
, and
Cahill
,
K.
,
1976
, “
Screening of Redox Couples and Electrode Materials
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-CR-134705
.
199.
Ciprios
,
G.
,
Erskine
,
W.
, and
Grimes
,
P. G.
,
1977
, “
Redox Bulk Energy Storage System Study
,” Exxon Research and Engineering Co., Government Research Labs, Linden, NJ, Technical Report No.
NASA-CR-135206
.
200.
Michaels
,
K.
, and
Hall
,
G.
,
1980
, “
Cost Projections for Redox Energy Storage Systems
,” United Technologies Corp., Power Systems Div., South Windsor, CT, Technical Report No.
NASA-CR-165260
.
201.
Warshay
,
M.
, and
Wright
,
L. O.
,
1977
, “
Cost and Size Estimates for a Redox Bulk Energy Storage Concept
,”
J. Electrochem. Soc.
,
124
(2), pp.
173
177
.
202.
Price
,
A.
,
Bartley
,
S.
,
Male
,
S.
, and
Cooley
,
G.
,
1999
, “
A Novel Approach to Utility Scale Energy Storage [Regenerative Fuel Cells]
,”
Power Eng. J.
,
13
(
3
), pp.
122
129
.
203.
Shigematsu
,
T.
,
2011
, “
Redox Flow Battery for Energy Storage
,”
SEI. Tech. Rev.
,
73
, pp.
4
13
.
204.
Shi
,
F.
,
2014
, “
Design of Flow Battery
,”
Reactor and Process Design in Sustainable Energy Technology
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
72
75
.
205.
Skyllas-Kazacos
,
M.
,
2010
, “
Energy Storage for Stand-Alone/Hybrid Systems: Electro-Chemical Energy Storage Technologies
,”
Stand-Alone and Hybrid Wind Systems: Technology, Energy Storage and Applications
,
Woodhead Publishing
,
Cambridge, UK
.
206.
Chan
,
K.-Y.
, and
Vanessa Li
,
C.-Y.
,
2014
,
Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms For Energy Conversion
,
CRC Press, Boca Raton, FL
, pp.
380
384
.
207.
Tokuda
,
N.
,
Kumamoto
,
T.
,
Shigematsu
,
T.
,
Deguchi
,
H.
,
Ito
,
T.
,
Yoshikawa
,
N.
, and
Hara
,
T.
,
1998
, “
Development of a Redox Flow Battery System
,”
SEI. Tech. Rev.
,
45
, pp.
88
94
.
208.
Alotto
,
P.
,
Guarnieri
,
M.
, and
Moro
,
F.
,
2014
, “
Redox Flow Batteries for the Storage of Renewable Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
325
335
.
209.
Chalamala
,
B. R.
,
Soundappan
,
T.
,
Fisher
,
G. R.
,
Anstey
,
M. R.
,
Viswanathan
,
V. V.
, and
Perry
,
M. L.
,
2014
, “
Redox Flow Batteries: An Engineering Perspective
,”
Proc. IEEE
,
102
(
6
), pp.
976
999
.
210.
Hoberecht
,
M. A.
, and
Thaller
,
L. H.
,
1982
, “
Design Flexibility of Redox Flow Systems
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-82854
.
211.
Aaron
,
D. S.
,
Liu
,
Q.
,
Tang
,
Z.
,
Grim
,
G. M.
,
Papandrew
,
A. B.
,
Turhan
,
A.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2012
, “
Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture
,”
J. Power Sources
,
206
, pp.
450
453
.
212.
Perrry
,
M. L.
,
2009
, “
Flow Battery With Interdigitated Flow Field
,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
US9166243 B2
.
213.
Di Noto
,
V.
,
Guarnieri
,
M.
, and
Moro
,
F.
,
2010
, “
A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices
,”
IEEE Trans. Ind. Electron.
,
57
(6), pp.
1865
1873
.
214.
Ma
,
X.
,
Zhang
,
H.
, and
Xing
,
F.
,
2011
, “
A Three-Dimensional Model for Negative Half-Cell of the Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
58
, pp.
238
246
.
215.
Viswanathan
,
V.
,
Wang
,
W.
,
Li
,
B.
,
Coffey
,
G.
,
Thomsen
,
E.
,
Graff
,
G.
,
Balducci
,
P.
,
Kintnereyer
,
M.
, and
Sprenkle
,
V.
,
2014
, “
Cost and Performance Model for Redox Flow Batteries
,”
J. Power Sources
,
247
, pp.
1040
1051
.
216.
Li
,
B.
,
Luo
,
Q.
,
Wei
,
X.
,
Nie
,
Z.
,
Thomsen
,
E.
,
Chen
,
B.
,
Sprenkle
,
V.
, and
Wang
,
W.
,
2014
, “
Capacity Decay Mechanism of Microporous Separator-Based All-Vanadium Redox Flow Batteries and Its Recovery
,”
ChemSusChem
,
7
(
2
), pp.
577
584
.
217.
Cho
,
K. T.
,
Albertus
,
P.
,
Battaglia
,
V.
,
Kojic
,
A.
,
Srinivasan
,
V.
, and
Weber
,
A. Z.
,
2013
, “
Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage
,”
Energy Technol.
,
1
(
10
), pp.
596
608
.
218.
Perry
,
M. L.
,
Darling
,
R. M.
, and
Zaffou
,
R.
,
2013
, “
High Power Density Redox Flow Battery Cells
,”
ECS Trans.
,
53
(
7
), pp.
7
16
.
You do not currently have access to this content.