Organic/inorganic materials are investigated as additives to improve the stability of a vanadium electrolyte for a vanadium redox flow battery (VRFB) at operating temperatures of 25 °C and 40 °C. Among these materials, the most effective additive is chosen based on the thermal stability and electrochemical performance with a long inhibition time. Through precipitation time and electrochemical measurements, the results show that the best inhibition effect is achieved by adding sodium pyrophosphate dibasic (SPD, H2Na2O7P2) as an additive at a considerably high H2SO4 concentration (3M) electrolyte, indicating an improved redox reversibility and electrochemical activity. Nonflow cell assembled with the SPD additive exhibits larger discharge capacity retentions of 40% than a blank solution with the retentions of 2% at 600 cycles at 40 °C. In the case of flow cell, the capacity retention on the SPD additive shows 55.4%, which is 5.3% higher than the blank solution at 40 °C and 180 cycles. The morphology of the precipitation is investigated by SEM, which exhibits more severe V2O5 precipitation amount on the carbon felt electrode used in the blank electrolyte at 40 °C, which causes larger capacity losses compared to cells assembled with the SPD additive electrolyte.

References

References
1.
Ding
,
C.
,
Ni
,
X.
,
Li
,
X.
,
Xi
,
X.
,
Han
,
X.
,
Bao
,
X.
, and
Zhang
,
H.
,
2015
, “
Effects of Phosphate Additives on the Stability of Positive Electrolytes for Vanadium Flow Batteries
,”
Electrochim. Acta
,
164
, pp.
307
314
.
2.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
3.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C. W.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
4.
Skyllas‐Kazacos
,
M.
, and
Grossmith
,
F.
,
1987
, “
Efficient Vanadium Redox Flow Cell
,”
J. Electrochem. Soc.
,
134
(
12
), pp.
2950
2953
.
5.
Díaz-González
,
F.
,
Sumper
,
A.
,
Gomis-Bellmunt
,
O.
, and
Villafáfila-Robles
,
R.
,
2012
, “
A Review of Energy Storage Technologies for Wind Power Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2154
2171
.
6.
Hall
,
P. J.
, and
Bain
,
E. J.
,
2008
, “
Energy-Storage Technologies and Electricity Generation
,”
Energy Policy
,
36
(
12
), pp.
4352
4355
.
7.
Park
,
S.-K.
,
Shim
,
J.
,
Yang
,
J. H.
,
Jin
,
C.-S.
,
Lee
,
B. S.
,
Lee
,
Y.-S.
,
Shin
,
K.-H.
, and
Jeon
,
J.-D.
,
2014
, “
Effect of Inorganic Additive Sodium Pyrophosphate Tetrabasic on Positive Electrolytes for a Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
121
, pp.
321
327
.
8.
Rahman
,
F.
, and
Skyllas-Kazacos
,
M.
,
2009
, “
Vanadium Redox Battery: Positive Half-Cell Electrolyte Studies
,”
J. Power Sources
,
189
(
2
), pp.
1212
1219
.
9.
Roe
,
S.
,
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
,
2016
, “
A High Energy Density Vanadium Redox Flow Battery With 3 M Vanadium Electrolyte
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5023
A5028
.
10.
Wu
,
X.
,
Liu
,
S.
,
Wang
,
N.
,
Peng
,
S.
, and
He
,
Z.
,
2012
, “
Influence of Organic Additives on Electrochemical Properties of the Positive Electrolyte for All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
78
, pp.
475
482
.
11.
Kausar
,
N.
,
Mousa
,
A.
, and
Skyllas-Kazacos
,
M.
,
2016
, “
The Effect of Additives on the High-Temperature Stability of the Vanadium Redox Flow Battery Positive Electrolytes
,”
ChemElectroChem
,
3
(
2
), pp.
276
282
.
12.
Rahman
,
F.
, and
Skyllas-Kazacos
,
M.
,
1998
, “
Solubility of Vanadyl Sulfate in Concentrated Sulfuric Acid Solutions
,”
J. Power Sources
,
72
(
2
), pp.
105
110
.
13.
Cheng
,
M.
,
1991
, “Electrolyte Optimization and Studies for the Vanadium Redox Battery,”
M.S. thesis
, The University of New South Wales, Sydney, Australia.
14.
Rahman, F.
, 1998, “
Stability and Properties of Supersaturated Vanadium Electrolytes for High Energy Density Vanadium Redox Battery
,”
Ph.D. dissertation
, University of New South Wales, Sydney, Australia.
15.
Zhang
,
Y.
,
Haushalter
,
R. C.
, and
Zubieta
,
J.
,
1997
, “
Hydrothermal Synthesis and Crystal and Molecular Structure of a Binuclear Dioxovanadium(V) Species Exhibiting a Bridging HPO42−Ligand, [(VO2)2(HPO4)(2,2′-bipy)2]·H2O
,”
Inorg. Chim. Acta
,
260
(
1
), pp.
105
110
.
16.
Skyllas‐Kazacos
,
M.
,
Peng
,
C.
, and
Cheng
,
M.
,
1999
, “
Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery
,”
Electrochem. Solid-State Lett.
,
2
(
3
), pp.
121
122
.
17.
Ashraf Gandomi
,
Y.
,
Aaron
,
D. S.
, and
Mench
,
M. M.
,
2016
, “
Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries
,”
Electrochim. Acta
,
218
, pp.
174
190
.
18.
Darling
,
R. M.
,
Weber
,
A. Z.
,
Tucker
,
M. C.
, and
Perry
,
M. L.
,
2016
, “
The Influence of Electric Field on Crossover in Redox-Flow Batteries
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5014
A5022
.
19.
Weber
,
A. Z.
,
Mench
,
M. M.
,
Meyers
,
J. P.
,
Ross
,
P. N.
,
Gostick
,
J. T.
, and
Liu
,
Q.
,
2011
, “
Redox Flow Batteries: A Review
,”
J. Appl. Electrochem.
,
41
(
10
), p.
1137
.
20.
Corcuera
,
S.
, and
Skyllas-Kazacos
,
M.
,
2012
, “
State-Of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery
,”
Eur. Chem. Bull.
,
1
(
12
), pp.
511
519
.
21.
Mohammadi
,
T.
,
Chieng
,
S. C.
, and
Skyllas Kazacos
,
M.
,
1997
, “
Water Transport Study Across Commercial Ion Exchange Membranes in the Vanadium Redox Flow Battery
,”
J. Membr. Sci.
,
133
(
2
), pp.
151
159
.
22.
Wiedemann
,
E.
,
Heintz
,
A.
, and
Lichtenthaler
,
R. N.
,
1998
, “
Sorption Isotherms of Vanadium With H3O+ Ions in Cation Exchange Membranes
,”
J. Membr. Science
,
141
(
2
), pp.
207
213
.
You do not currently have access to this content.