In the present paper, a composite electrode material was developed for vanadium redox flow batteries (VRFBs). Activated charcoal particles were evenly immobilized on the graphite felt (GF) via a sucrose pyrolysis process for the first time. The in site formed pyrolytic carbon is used as the binder, because it is essentially carbon material as well as GF and activated charcoal, which has a natural tendency to realize good adhesion and low contact resistance. The activated charcoal decorated GF electrode (abbreviated as the composite electrode) possesses larger surface area (13.8 m2 g−1), more than two times as GF (6.3 m2 g−1). The oxygen content of composite electrode is also higher (7.0%) than that of GF (4.8%). The composite electrode was demonstrated to lower polarization and increase the reversibility toward the VO2+/VO2+ redox couple according to the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The charge–discharge cycling test was conducted with a single VRFB cell. The results indicate that the cell with composite electrode presents higher charge–discharge capacity, larger electrolyte utilization efficiency (EU), and higher energy conversion efficiency (79.1%) compared with that using GF electrode. The increasing electrochemical performances of composite electrodes are mainly ascribed to the high electrochemical activity of activated charcoal particles and increasing superficial area.

References

References
1.
Fan
,
C. L.
,
Yang
,
H. T.
, and
Zhu
,
Q. S.
,
2017
, “
Selective Hydrolysis of Trace TiCl4, From VOCl3 for Preparation of High Purity V2O5
,”
Sep. Purif. Technol.
,
185
, pp.
196
201
.
2.
Kumar
,
S.
, and
Jayanti
,
S.
,
2016
, “
High Energy Efficiency With Low-Pressure Drop Configuration for an All-Vanadium Redox Flow Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(4), p.
041005
.
3.
Fan
,
C. L.
,
Yang
,
H. T.
, and
Zhu
,
Q. S.
,
2017
, “
Preparation and Electrochemical Properties of High Purity Mixed-Acid Electrolytes for High Energy Density Vanadium Redox Flow Battery
,”
Int. J. Electrochem. Sci.
,
12
, pp.
7728
7738
.
4.
Skyllas-Kazacos
,
M.
,
Rychcik
,
M.
,
Robins
,
R. H.
,
Fane
,
A. G.
, and
Green
,
M. A.
,
1986
, “
New All-Vanadium Redox Flow Cell
,”
J. Electrochem. Soc.
,
133
(
5
), pp.
1057
1058
.
5.
Wei
,
L.
,
Zhao
,
T.
,
Zeng
,
L.
,
Zhou
,
X.
, and
Zeng
,
Y.
,
2016
, “
Titanium Carbide Nanoparticle-Decorated Electrode Enables Significant Enhancement in Performance of All-Vanadium Redox Flow Batteries
,”
Energy Technol.
,
4
(
8
), pp.
990
996
.
6.
He
,
Z.
,
Shi
,
L.
,
Shen
,
J.
,
He
,
Z.
, and
Liu
,
S.
,
2015
, “
Effects of Nitrogen Doping on the Electrochemical Performance of Graphite Felts for Vanadium Redox Flow Batteries
,”
Int. J. Energy Res.
,
39
(
5
), pp.
709
716
.
7.
Cunha
,
Á.
,
Martins
,
J.
,
Rodrigues
,
N.
, and
Brito
,
F. P.
,
2015
, “
Vanadium Redox Flow Batteries: A Technology Review
,”
Int. J. Energy Res.
,
39
(
7
), pp.
889
918
.
8.
Parasuraman
,
A.
,
Lim
,
T. M.
,
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
,
2013
, “
Review of Material Research and Development for Vanadium Redox Flow Battery Applications
,”
Electrochim. Acta
,
101
, pp.
27
40
.
9.
Li
,
W.
,
Zhang
,
Z.
,
Tang
,
Y.
,
Bian
,
H.
,
Ng
,
T.
,
Zhang
,
W.
, and
Lee
,
C.
,
2016
, “
Graphene-Nanowall-Decorated Carbon Felt With Excellent Electrochemical Activity Toward VO2+/VO2+ Couple for All Vanadium Redox Flow Battery
,”
Adv. Sci.
,
3
(
4
), p.
1500276
.
10.
Chakrabarti
,
M. H.
,
Dryfe
,
R. A. W.
, and
Roberts
,
E. P. L.
,
2007
, “
Evaluation of Electrolytes for Redox Flow Battery Applications
,”
Electrochim. Acta
,
52
(
5
), pp.
2189
2195
.
11.
Zhong
,
S.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Electrochemical Behaviour of Vanadium(V)/Vanadium(IV) Redox Couple at Graphite Electrodes
,”
J. Power Sources
,
39
(
1
), pp.
1
9
.
12.
Sum
,
E.
,
Rychcik
,
M.
, and
Skyllas-Kazacos
,
M.
,
1985
, “
Evaluation of Electrode Materials for Vanadium Redox Cell
,”
J. Power Sources
,
16
(
2
), pp.
85
95
.
13.
Wang
,
S. Y.
,
Zhao
,
X. S.
,
Cochell
,
T.
, and
Manthiram
,
A.
,
2012
, “
Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries
,”
J. Phys. Chem. Lett.
,
3
(
16
), pp.
2164
2170
.
14.
Skyllas-Kazacos
,
M.
,
2003
, “
Novel Vanadium Chloride/Polyhalide Redox Flow Battery
,”
J. Power Sources
,
124
(
1
), pp.
299
302
.
15.
Wei
,
Z. D.
, and
Chan
,
S. H.
,
2004
, “
Electrochemical Deposition of PtRu on an Uncatalyzed Carbon Electrode for Methanol Electrooxidation
,”
J. Electroanal. Chem.
,
569
(
1
), pp.
23
33
.
16.
Sun
,
B.
, and
Skyllas-Kazakos
,
M.
,
1991
, “
Chemical Modification and Electrochemical Behaviour of Graphite Fibre in Acidic Vanadium Solution
,”
Electrochim. Acta
,
36
(3–4), pp.
513
517
.
17.
Park
,
M.
,
Jung
,
Y.
,
Kim
,
J.
,
Lee
,
H.
, and
Cho
,
J.
,
2013
, “
Synergistic Effect of Carbon Nanofiber/Nanotube Composite Catalyst on Carbon Felt Electrode for High-Performance All-Vanadium Redox Flow Battery
,”
Nano Lett.
,
13
(
10
), pp.
4833
4841
.
18.
Gattrell
,
M.
,
Park
,
J.
,
Macdougall
,
B.
,
Apte
,
J.
,
Mccarthy
,
S.
, and
Wu
,
C. W.
,
2004
, “
Numerical Solutions By Method of Lines Approach for Fluid Flow in a Modified Rotating Disk Electrode Apparatus
,”
J. Electrochem. Soc.
,
151
(
1
), pp.
A123
A130
.
19.
Flox
,
C.
,
Rubio-Garcia
,
J.
,
Nafria
,
R.
,
Zamani
,
R.
,
Skoumal
,
M.
,
Andreu
,
T.
,
Arbiol
,
J.
,
Cabot
,
A.
, and
Morante
,
J. R.
,
2012
, “
Active Nano-CuPt3, Electrocatalyst Supported on Graphene for Enhancing Reactions at the Cathode in All-Vanadium Redox Flow Batteries
,”
Carbon
,
50
(
6
), pp.
2372
2374
.
20.
Tsai
,
H. M.
,
Yang
,
S.
,
Ma
,
C. M.
, and
Xie
,
X. F.
,
2012
, “
Preparation and Electrochemical Activities of Iridium-Decorated Graphene as the Electrode for All-Vanadium Redox Fow Batteries
,”
Electrochim. Acta
,
77
, pp.
232
236
.
21.
Wang
,
W. H.
, and
Wang
,
X. D.
,
2007
, “
Investigation of Ir-Modified Carbon Felt as the Positive Electrode of an All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
52
(
24
), pp.
6755
6762
.
22.
Huang
,
R. H.
,
Sun
,
C. H.
,
Tseng
,
T. M.
,
Chao
,
W. K.
,
Hsueh
,
K. L.
, and
Shieu
,
F. S.
,
2012
, “
Improvement of Titanium Dioxide Addition on Carbon Black Composite for Negative Electrode in Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
A1579
A1586
.
23.
Han
,
P.
,
Wang
,
H.
,
Liu
,
Z.
,
Chen
,
X.
,
Ma
,
W.
,
Yao
,
J.
,
Zhu
,
Y.
, and
Cui
,
G.
,
2011
, “
Graphene Oxide Nanoplatelets as Excellent Electrochemical Active Materials for VO2+/VO2+ and V2+/V3+ Redox Couples for a Vanadium Redox Flow Battery
,”
Carbon
,
49
(
2
), pp.
693
700
.
24.
Li
,
W.
,
Liu
,
J.
, and
Yan
,
C.
,
2011
, “
Multi-Walled Carbon Nanotubes Used as an Electrode Reaction Catalyst for VO2+/VO2+ for a Vanadium Redox Flow Battery
,”
Carbon
,
49
(
11
), pp.
3463
3470
.
25.
Radford
,
G. J. W.
,
Cox
,
J.
,
Wills
,
R. G. A.
, and
Walsh
,
F. C.
,
2008
, “
Electrochemical Characterisation of Activated Carbon Particles Used in Redox Flow Battery Electrodes
,”
J. Power Sources
,
185
(
2
), pp.
1499
1504
.
26.
Zhu
,
H.
,
Zhang
,
Y.
,
Yue
,
L.
,
Li
,
W.
,
Li
,
G.
,
Shu
,
D.
, and
Chen
,
H. Y.
,
2008
, “
Graphite-Carbon Nanotube Composite Electrodes for All Vanadium Redox Flow Battery
,”
J. Power Sources
,
184
(
2
), pp.
637
640
.
27.
Han
,
P.
,
Yue
,
Y.
,
Liu
,
Z.
,
Xu
,
W.
,
Zhang
,
L.
,
Xu
,
H.
,
Dong
,
S.
, and
Cui
,
G.
,
2011
, “
Graphene Oxide Nanosheets/Multi-Walled Carbon Nanotubes Hybrid as an Excellent Electrocatalytic Material Towards VO2+/VO2+ Redox Couples for Vanadium Redox Flow Batteries
,”
Energy Environ. Sci.
,
4
(
11
), pp.
4710
4717
.
28.
Faraji
,
S.
, and
Ani
,
F.
,
2015
, “
The Development Supercapacitor From Activated Carbon by Electroless Plating-A Review
,”
Renewable Sustainable Energ. Rev.
,
42
, pp.
823
834
.
29.
Qi
,
W.
,
Luo
,
Y.
,
Kang
,
L.
, and
Zhang
,
G.
,
2012
, “
Synthesis of Carbon-Coated LaFeO3 and Electrochemical Properties of the Composites in Alkaline Solution
,”
J. Inorg. Mater.
,
27
(12), pp.
1243
1250
.
30.
Zhang
,
Z.
,
Xi
,
J.
,
Zhou
,
H.
, and
Qiu
,
X.
,
2016
, “
KOH Etched Graphite Felt With Improved Wettability and Activity for Vanadium Flow Batteries
,”
Electrochim. Acta
,
218
, pp.
15
23
.
31.
Xi
,
J.
,
Wu
,
Z.
,
Qiu
,
X.
, and
Chen
,
L.
,
2007
, “
Nafion/SiO2 Hybrid Membrane for Vanadium Redox Flow Battery
,”
J. Power Sources
,
166
(
2
), pp.
531
536
.
32.
Gao
,
C.
,
Wang
,
N.
,
Peng
,
S.
,
Liu
,
S.
,
Lei
,
Y.
,
Liang
,
X.
,
Zeng
,
S.
, and
Zi
,
H.
,
2013
, “
Influence of Fenton's Reagent Treatment on Electrochemical Properties of Graphite Felt for All Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
88
, pp.
193
202
.
33.
Shen
,
J.
,
Liu
,
S.
,
He
,
Z.
, and
Shi
,
L.
,
2015
, “
Influence of Antimony Ions in Negative Electrolyte on the Electrochemical Performance of Vanadium Redox Flow Batteries
,”
Electrochim. Acta
,
151
, pp.
297
305
.
34.
Wu
,
X.
,
Xu
,
H.
,
Shen
,
Y.
,
Xu
,
P.
,
Lu
,
L.
,
Fu
,
J.
, and
Zhao
,
H.
,
2014
, “
Treatment of Graphite Felt by Modified Hummers Method for the Positive Electrode of Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
138
, pp.
264
269
.
35.
Haddadi-Asl
,
V.
,
Kazacos
,
M.
, and
Skyllas-Kazacos
,
M.
,
1995
, “
Carbon-Polymer Composite Electrodes for Redox Cells
,”
J. Appl. Polym. Sci.
,
57
(
12
), pp.
1455
1463
.
36.
Xue
,
F.
,
Wang
,
Y.
,
Wang
,
W.
, and
Wang
,
X.
,
2008
, “
Investigation on the Electrode Process of the Mn(II)/Mn(III) Couple in Redox Flow Battery
,”
Electrochim. Acta
,
53
(
22
), pp.
6636
6642
.
37.
Wu
,
X.
,
Xu
,
H.
,
Xu
,
P.
,
Shen
,
Y.
,
Lu
,
L.
,
Shi
,
J.
,
Fu
,
J.
, and
Zhao
,
H.
,
2014
, “
Microwave-Treated Graphite Felt as the Positive Electrode for All-Vanadium Redox Flow Battery
,”
J. Power Sources
,
263
, pp.
104
109
.
38.
Meyers
,
P.
,
Doyle
,
D.
, and
Darling
,
R.
,
1999
, “
The Impedance Response of a Porous Electrode Composed of Intercalation Particles
,”
J. Electrochem. Soc.
,
147
(8), pp.
2930
2940
.
39.
Albery
,
W.
, and
Mount
,
A.
,
1992
, “
The AC Impedance of a Three-Ion Thin Layer Cell
,”
J. Electroanal. Chem.
,
325
(
1–2
), pp.
95
110
.
40.
Yue
,
L.
,
Li
,
W.
,
Sun
,
F.
,
Zhao
,
L.
, and
Xing
,
L.
,
2010
, “
Highly Hydroxylated Carbon Fibres as Electrode Materials of All-Vanadium Redox Flow Battery
,”
Carbon
,
48
(
11
), pp.
3079
3090
.
41.
Wu
,
T.
,
Huang
,
K.
,
Liu
,
S.
,
Zhuang
,
S.
,
Fang
,
D.
,
Li
,
S.
,
Lu
,
D.
, and
Su
,
A.
, “
Hydrothermal Ammoniated Treatment of PAN-Graphite Felt for Vanadium Redox Flow Battery
,”
J. Solid State Electr.
,
16
(
2
), pp.
579
585
.
42.
Levi
,
M. D.
, and
Aurbach
,
D.
,
2004
, “
Impedance of a Single Intercalation Particle and of Nonhomogeneous, Multilayered Porous Composite Electrodes for Li-Ion Batteries
,”
J. Phys. Chem. B
,
108
(
31
), pp.
11693
11703
.
You do not currently have access to this content.