Flow field plays an important role in the performances of the fuel cells, especially in large area fuel cells. In the present work, an innovative, versatile flow field, capable of combining in different conventional modes is reported and evaluated in a polymer electrolyte fuel cell (PEFC) with an active area of 150 cm2. The proposed design is capable of offering serpentine, interdigitated, counterflow, dead-end, and serpentine-interdigitated hybrid mode. Moreover, it is possible to switch over from one flow mode to another mode of flow during operation at any point of time. The flow design consists of the multichannel parallel serpentine flow (SP) field and a pair of an inlet and outlet manifolds instead of conventional single inlet and outlet manifold. Flow distribution was successfully altered without affecting the performances, and it was observed a combination of serpentine and interdigitated on the cathode side offered steady performance for more than 20 min when it was operated at a current density of 700 mA cm−2.

References

References
1.
Li
,
X.
, and
Sabir
,
I.
,
2005
, “
Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs
,”
Int. J. Hydrogen Energy
,
30
(
4
), pp.
359
371
.
2.
Su
,
A.
,
Chiu
,
Y. C.
, and
Weng
,
F. B.
,
2005
, “
The Impact of Flow Field Pattern on Concentration and Performance in PEMFC
,”
Int. J. Energy Res.
,
29
(
5
), pp.
409
425
.
3.
Arvay
,
A.
,
French
,
J.
,
Wang
,
J. C.
,
Peng
,
X. H.
, and
Kannan
,
A. M.
,
2013
, “
Nature Inspired Flow Field Designs for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
38
(
9
), pp.
3717
3726
.
4.
Bilgili
,
M.
,
Bosomoiu
,
M.
, and
Tsotridis
,
G.
,
2015
, “
Gas Flow Field With Obstacles for PEM Fuel Cells at Different Operating Conditions
,”
Int. J. Hydrogen Energy
,
40
(
5
), pp.
2303
2311
.
5.
Noorkami
,
M.
,
Robinson
,
J. B.
,
Meyer
,
Q.
,
Obeisun
,
O. A.
,
Fraga
,
E. S.
,
Reisch
,
T.
,
Shearing
,
P. R.
, and
Brett
,
D. J. L.
,
2014
, “
Effect of Temperature Uncertainty on Polymer Electrolyte Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
39
(
3
), pp.
1439
1448
.
6.
Wawdee
,
P.
,
Limtrakul
,
S.
,
Vatanatham
,
T.
, and
Fowler
,
M. W.
,
2015
, “
Water Transport in a PEM Fuel Cell With Slanted Channel Flow Field Plates
,”
Int. J. Hydrogen Energy
,
40
(
9
), pp.
3739
3748
.
7.
Haase
,
S.
, and
Mueller
,
S.
,
2015
, “
Pressure Distribution Method for Ex-Situ Evaluation of Flow Distribution in Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
280
, pp.
612
620
.
8.
Wang
,
J.
,
2015
, “
Theory and Practice of Flow Field Designs for Fuel Cell Scaling-Up: A Critical Review
,”
Appl. Energy
,
157
, pp.
640
663
.
9.
Sinha
,
P. K.
,
Mukherjee
,
P. P.
, and
Wang
,
C.
,
2017
, “
Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells
,”
J. Mater. Chem.
,
17
(30), pp.
3089
3103
.
10.
Gandomi
,
Y. A.
, and
Mench
,
M. M.
,
2013
, “
Assessing the Limits of Water Management Using Asymmetric Micro-Porous Layer Configurations
,”
ECS Trans.
,
58
(
1
), pp.
1375
1382
.
11.
Gandomi
,
Y. A.
,
Edmundson
,
M.
,
Busby
,
F.
, and
Mench
,
M. M.
,
2016
, “
Water Management in Polymer Electrolyte Fuel Cells Through Asymmetric Thermal and Mass Transport Engineering of the Micro-Porous Layers
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F933
F944
.
12.
Weber
,
A. Z.
,
Borup
,
R. L.
,
Darling
,
R. M.
,
Das
,
P. K.
,
Dursch
,
T. J.
,
Gu
,
W.
, et al. .,
2014
, “
A Critical Review of Modeling Transport Phenomena in Polymer‐Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1254
F1299
.
13.
Taccani
,
R.
, and
Zuliani
,
N.
,
2011
, “
Effect of Flow Field Design on Performances of High Temperature PEM Fuel Cells: Experimental Analysis
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10282
10287
.
14.
Wang
,
X.
,
Duan
,
Y.
,
Yan
,
W.
, and
Peng
,
X.
,
2008
, “
Effects of Flow Channel Geometry on Cell Performance for PEM Fuel Cells With Parallel and Interdigitated Flow Fields
,”
Electrochim. Acta
,
53
(
16
), pp.
5334
5343
.
15.
Liu
,
H.
,
Li
,
P.
,
Juarez-Robles
,
D.
,
Wang
,
K.
, and
Hernandez-Guerrero
,
A.
,
2014
, “
Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance
,”
Front. Energy Res.
,
2
, pp.
1
8
.
16.
Aiyejina
,
A.
, and
Sastry
,
M. K. S.
,
2012
, “
PEMFC Flow Channel Geometry Optimization: A Review
,”
J. Fuel Cell Sci. Technol.
,
9
(
1
), pp.
011011
011024
.
17.
Chen
,
Y. S.
, and
Peng
,
H.
,
2011
, “
Predicting Current Density Distribution of Proton Exchange Membrane Fuel Cells With Different Flow Field Designs
,”
J. Power Sources
,
196
(
4
), pp.
1992
2004
.
18.
Wang
,
J.
, and
Wang
,
H.
,
2012
, “
Flow Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications
,”
Fuel Cells
,
12
(
6
), pp.
989
1003
.
19.
Tong
,
S.
,
Bachman
,
J. C.
,
Santamaria
,
A.
, and
Park
,
J. W.
,
2013
, “
Experimental Investigation on a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Parallel Flow Field Design With External Two-Valve Regulation on Cathode Channels
,”
J. Power Sources
,
242
, pp.
195
201
.
20.
Belcho
,
P. M.
,
Forte
,
M. M. C.
, and
Carpenter
,
D. E. O. S.
,
2012
, “
Parallel Serpentine-Baffle Flow Field Design for Water Management in a Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(16), pp.
11904
11911
.
21.
Wang
,
J.
, and
Wang
,
H.
,
2012
, “
Discrete Approach for Flow-Field Designs of Parallel Channel Configurations in Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
14
), pp.
10881
10897
.
22.
Guo
,
N.
,
Leu
,
M. C.
, and
Koylu
,
U. O.
,
2014
, “
Bio-Inspired Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21185
21195
.
23.
Xu
,
C.
, and
Zhao
,
T. S.
,
2007
, “
A New Flow Field Design for Polymer Electrolyte-Based Fuel Cells
,”
Electrochem. Commun.
,
9
(
3
), pp.
497
503
.
24.
Meenakshi
,
S.
,
Sahu
,
A. K.
,
Bhat
,
S. D.
,
Sridhar
,
P.
,
Pitchumani
,
S.
, and
Shukla
,
A. K.
,
2013
, “
Mesostructured-Aluminosilicate-Nafion Hybrid Membranes for Direct Methanol Fuel Cells
,”
Electrochim. Acta
,
89
, pp.
35
44
.
You do not currently have access to this content.