The flow field design of current collectors is a significant issue, which greatly affects the mass transport processes of reactants/products inside fuel cells. Especially for proton exchange membrane (PEM) fuel cells, an appropriate flow field design is very important due to the water balance problem. In this paper, a wavy surface is employed at the cathode flow channel to improve the oxygen mass transport process. The effects of wavy surface on transport processes are numerically investigated by using a three-dimensional anisotropic model including a water phase change model and a spherical agglomerate model. It is found that the wavy configurations enhance the oxygen transport and decrease the water saturation level. It is concluded that the predicted results and findings provide the guideline for the design and manufacture of fuel cells.

References

References
1.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
2.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T. H.
, and
Liu
,
H. T.
,
2003
, “
A Parametric Study of PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
28
(
11
), pp.
1263
1272
.
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
4.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2004
, “
Two-Phase Transport and the Role of Micro Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
49
(
25
), pp.
4359
4369
.
5.
Xing
,
L.
,
Mamlouk
,
M.
,
Kumar
,
R.
, and
Scott
,
K.
,
2014
, “
Numerical Investigation of the Optimal Nafion Ionomer Content in the Cathode Catalyst Layer: An Agglomerate Two-Phase Flow Modeling
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9087
9104
.
6.
Wu
,
H. W.
,
2016
, “
A Review of Recent Development: Transport and Performance Modeling of PEM Fuel Cells
,”
Appl. Energy
,
165
, pp.
81
106
.
7.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
2002
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
106
(1–2), pp.
284
294
.
8.
Siegle
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
Spakovsky
,
M. R.
,
2004
, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
,
128
(2), pp.
173
184
.
9.
Wu
,
H.
,
Berg
,
P.
, and
Li
,
X. G.
,
2010
, “
Modeling of PEM Fuel Cell Transients With Finite Rate Phase Transfer Processes
,”
J. Electrochem. Soc.
,
157
(
1
), pp.
B1
B12
.
10.
Wu
,
H.
,
Berg
,
P.
, and
Li
,
X. G.
,
2010
, “
Steady and Unsteady 3D Non-Isothermal Modeling of PEM Fuel Cells With the Effect of Non-Equilibrium Phase Transfer
,”
Appl. Energy
,
87
(
9
), pp.
2778
2784
.
11.
Meng
,
H.
,
2010
, “
Numerical Studies of Liquid Water Behaviors in PEM Fuel Cell Cathode Considering Transport Across Different Porous Media
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5569
5579
.
12.
Sun
,
W.
,
Peppley
,
B.
, and
Karan
,
K.
,
2005
, “
An Improved Two-Dimensional Agglomerate Cathode Model to Study the Influence of Catalyst Layer Structural Parameters
,”
Electrochim. Acta
,
50
(
16–17
), pp.
3359
3374
.
13.
Yang
,
X. G.
,
Ye
,
Q.
, and
Cheng
,
P.
,
2011
, “
Matching of Water and Temperature Fields in Proton Exchange Membrane Fuel Cells With Non-Uniform Distributions
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12524
12537
.
14.
Jahromi
,
M. M.
, and
Kermani
,
M. J.
,
2012
, “
Performance Prediction of PEM Fuel Cell Cathode Catalyst Layer Using Agglomerate Model
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
17954
17966
.
15.
Ahmed
,
D. H.
, and
Sung
,
H. J.
,
2006
, “
Effects of Channel Geometrical Configuration and Shoulder Width on PEM Fuel Cell Performance at High Current Density
,”
J. Power Sources
,
162
(
1
), pp.
327
339
.
16.
Um
,
S.
, and
Wang
,
C. Y.
,
2004
, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
125
(
1
), pp.
40
51
.
17.
Fontana
,
E.
,
Mancusi
,
E.
,
Silva
,
A.
,
Mariani
,
V. C.
,
Souza
,
A. A. U.
, and
Souza
,
S. M. A. G. U.
,
2011
, “
Study of the Effects of Flow Channel With Non-Uniform Cross-Sectional Area on PEM Fuel Cell Species and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
54
(21–22), pp.
4462
4472
.
18.
Perng
,
S. W.
, and
Wu
,
H. W.
,
2011
, “
Non-Isothermal Transport Phenomena and Cell Performance of a Cathodic PEM Fuel Cell With a Baffle Plate in a Tapered Channel
,”
Appl. Energy
,
88
(
1
), pp.
52
67
.
19.
Kuo
,
J. K.
,
Yen
,
T. H.
, and
Chen
,
C. K.
,
2008
, “
Three-Dimensional Numerical Analysis of PEM Fuel Cells With Straight and Wavy Gas Flow Fields Channels
,”
J. Power Sources
,
177
(
1
), pp.
96
103
.
20.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
,
2006
, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
,
162
(
1
), pp.
228
238
.
21.
Meng
,
H.
, and
Wang
,
C. Y.
,
2005
, “
Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
9
), pp.
A1733
A1741
.
22.
Zamel
,
N.
,
Li
,
X. G.
, and
Shen
,
J.
,
2012
, “
Numerical Estimation of the Effective Electrical Conductivity in Carbon Paper Diffusion Media
,”
Appl. Energy
,
93
, pp.
39
44
.
23.
Ge
,
S. H.
,
Li
,
X. G.
,
Yi
,
B. L.
, and
Hsing
, I
. M.
,
2005
, “
Absorption, Desorption and Transport of Water in Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
6
), pp.
A1149
A1157
.
24.
Zawodzinski
,
T. A.
,
Springer
,
T. E.
,
Uribe
,
F.
, and
Gottesfeld
,
S.
,
1993
, “
Characterization of Polymer Electrolytes for Fuel Cell Applications
,”
Solid State Ionics
,
60
, pp.
199
211
.
25.
Dalasm
,
N. K. H.
,
Kermani
,
M. J.
,
Moghaddam
,
D. G.
, and
Stockie
,
J. M.
,
2010
, “
A Parametric Study of Cathode Catalyst Layer Structural Parameters on the Performance of a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2417
2427
.
26.
Dawn
,
D. W.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
27.
Pasaogullari
,
U.
,
Mukherjee
,
P. P.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2007
, “
Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer
,”
J. Electrochem. Soc.
,
154
(
8
), pp.
B823
B834
.
28.
Lampinen
,
M. J.
, and
Fomino
,
M.
,
1993
, “
Analysis of Free Energy and Entropy Changes for Half Cell Reactions
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3537
3546
.
You do not currently have access to this content.