The use of high temperature fuel cells, such as solid oxide fuel cells (SOFCs), for power generation is considered a very efficient and clean solution for conservation of energy resources. When the SOFC is coupled with a gas turbine, the global system efficiency can go beyond 70% on natural gas lower heating value (LHV). However, durability of the ceramic material and system operability can be significantly penalized by thermal stresses due to temperature fluctuations and noneven temperature distributions. Thermal management of the cell during load following is therefore essential. The purpose of this work is to develop and test a precombustor model for real-time applications in hardware-based simulations, and to implement a control strategy to keep constant cathode inlet temperature during different operative conditions. The real-time model of the precombustor was incorporated into the existing SOFC model and tested in a hybrid system facility, where a physical gas turbine and hardware components were coupled with a cyber-physical fuel cell for flexible, accurate, and cost-reduced simulations. The control of the fuel flow to the precombustor was proven to be effective in maintaining a constant cathode inlet temperature during a step change in fuel cell load. With a 20 A load variation, the maximum temperature deviation from the nominal value was below 0.3% (3 K). Temperature gradients along the cell were maintained below 10 K/cm. An efficiency analysis was performed in order to evaluate the impact of the precombustor on the overall system efficiency.

References

References
1.
Tarroja
,
B.
,
Mueller
,
F.
,
Maclay
,
J.
, and
Brouwer
,
J.
,
2010
, “
Parametric Thermodynamic Analysis of a Solid Oxide Fuel Cell Gas Turbine System Design Space
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072301
.
2.
Samuelsen
,
S.
,
2004
, “
Fuel Cell/Gas Turbine Hybrid Systems
,”
ASME International Gas Turbine Institute
, Norcross, GA.https://pdfs.semanticscholar.org/eec6/74b445beee3898ad4a580c18d1f9f9a9f2a5.pdf
3.
Massardo
,
F.
, and
Lubelli
,
F.
,
2000
, “
Internal Reforming Solid Oxide Fuel Cell–Gas Turbine Combined Cycles (IRSOFC-GT)—Part A: Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
27
35
.
4.
Jiang
,
W.
,
Luo
,
Y.
,
Zhang
,
W.
,
Woo
,
W.
, and
Tu
,
S. T.
,
2015
, “
Effect of Temperature Fluctuation on Creep and Failure Probability for Planar Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
5
), p.
051004
.
5.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
,
2006
, “
Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2319
2328
.
6.
Fardadi
,
M.
,
Mueller
,
F.
, and
Jabbari
,
F.
,
2010
, “
Feedback Control of Solid Oxide Fuel Cell Spatial Temperature Variation
,”
J. Power Sources
,
195
(
13
), pp.
4222
4233
.
7.
Janardhanan
,
V. M.
,
Heuveline
,
V.
, and
Deutschmann
,
O.
,
2007
, “
Performance Analysis of a SOFC Under Direct Internal Reforming Conditions
,”
J. Power Sources
,
172
(
1
), pp.
269
307
.
8.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
(
1
), pp.
303
315
.
9.
Ferrari
,
M. L.
,
2015
, “
Advanced Control Approach for Hybrid Systems Based on Solid Oxide Fuel Cells
,”
Appl. Energy
,
145
, pp.
364
373
.
10.
Mueller
,
F.
,
Tarroja
,
B.
,
Maclay
,
J.
,
Jabbari
,
F.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2010
, “
Design, Simulation and Control of a 100 MW-Class Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031007
.
11.
Huo
,
H. B.
,
Wu
,
X. Y.
,
Liu
,
Y. Q.
, and
Kuang
,
X. H.
,
2010
, “
Control-Oriented Nonlinear Modeling and Temperature Control for Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041005
.
12.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2005
, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell—II: Model-Based Dynamic Performance and Control
,”
J. Power Sources
,
147
(
1–2
), pp.
136
147
.
13.
Nakajo
,
A.
,
Stiller
,
C.
,
Härkegård
,
G.
, and
Bolland
,
O.
,
2006
, “
Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power Sources
,
158
(
1
), pp.
287
294
.
14.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
,
2005
, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
145
(
2
), pp.
463
469
.
15.
Yang
,
W. J.
,
Park
,
S. K.
,
Kim
,
T. S.
,
Kim
,
J. H.
,
Sohn
,
J. L.
, and
Ro
,
S. T.
,
2006
, “
Design Performance Analysis of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Temperature Constraints
,”
J. Power Sources
,
160
(
1
), pp.
462
473
.
16.
Mueller
,
F.
,
Jabbari
,
F.
, and
Brouwer
,
J.
,
2009
, “
On the Intrinsic Transient Capability and Limitations of Solid Oxide Fuel Cell Systems
,”
J. Power Sources
,
187
(
2
), pp.
452
460
.
17.
Ferrari
,
M. L.
,
2011
, “
Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations
,”
J. Power Sources
,
196
(
5
), pp.
2682
2690
.
18.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2006
, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
,
161
(
1
), pp.
484
491
.
19.
Larosa
,
L.
,
Traverso
,
A.
,
Ferrari
,
M.
, and
Zaccaria
,
V.
,
2015
, “
Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031602
.
20.
Tucker
,
D.
,
Lawson
,
L.
,
Smith
,
T. P.
, and
Haynes
,
C.
,
2006
, “
Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation
,”
ASME
Paper No. FUELCELL2006-97107.
21.
Zhou
,
N.
,
Young
,
C.
,
Tucker
,
D.
,
Pezzini
,
P.
, and
Traverso
,
A.
,
2015
, “
Transfer Function Development for Control of Cathode Airflow Transients in Fuel Cell Gas Turbine Hybrid Systems
,”
Int. J. Hydrogen Energy
,
40
(
4
), pp.
1967
1979
.
22.
Tucker
,
D.
,
VanOsdol
,
J. G.
,
Liese
,
E. A.
,
Lawson
,
L. O.
,
Zitney
,
S. E.
,
Gemmen
,
R. S.
,
Ford
,
J. C.
, and
Haynes
,
C. L.
,
2012
, “
Evaluation of Methods for Thermal Management in a Coal-Based SOFC Turbine Hybrid Through Numerical Simulation
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p.
041004
.
23.
Tucker
,
D.
,
Liese
,
E.
,
VanOsdol
,
J. G.
,
Lawson
,
L. O.
, and
Gemmen
,
R. S.
,
2002
, “
Fuel Cell Gas Turbine Hybrid Simulation Facility Design
,”
ASME
Paper No. IMECE2002-33207.
24.
Tucker
,
D.
,
Shelton
,
M.
, and
Mannivannan
,
A.
,
2009
, “
The Role of Solid Oxide Fuel Cells in Advanced Hybrid Power Systems of the Future
,”
Interface
,
18
(
3
), pp.
45
48
.https://www.electrochem.org/dl/interface/fal/fal09/fal09_p045-048.pdf
25.
Tucker
,
D.
,
Pezzini
,
P.
, and
Banta
,
L.
,
2013
, “
Equivalence Ratio Startup Control of a Fuel Cell Turbine Hybrid System
,”
ASME
Paper No. GT2013-94809.
26.
Hughes
,
D.
,
Wepfer
,
W. J.
,
Davies
,
K.
,
Ford
,
J. C.
,
Haynes
,
C.
, and
Tucker
,
D.
,
2011
, “
A Real-Time Spatial SOFC Model for Hardware-Based Simulation of Hybrid Systems
,”
ASME
Paper No. FuelCell2011-54591.
27.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1990
, “
The Chemkin Thermodynamic Data Base
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND87-8215.
You do not currently have access to this content.