Fuel cell technology has undergone extensive research and development in the past 20 years. Even though it has not yet made a commercial breakthrough, it is still seen as a promising enabling technology for emissions reduction. The high electrical efficiency (Powell et al., 2012, “Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation,” J. Power Sources, 205, pp. 377–384; Föger and Payne, 2014, “Ceramic Fuel Cells BlueGen—Market Introduction Experience,” 11th European SOFC & SOE Forum 2014, Lucerne, Switzerland, Paper No. A0503; and Payne et al., 2009, “Generating Electricity at 60% Electrical Efficiency From 1-2 kWe SOFC Products,” ECS Trans., 25(2), pp. 231–240) of an solid oxide fuel cell (SOFC)-based fuel cell system and the ability to operate on renewable fuels make it an ideal platform for transition from fossil-fuel dependency to a sustainable world relying on renewable energy, by reducing emissions during the transition period where fossil fuels including natural gas remain a major source of energy. Key technical hurdles to commercialization are cost, life, and reliability. Despite significant advances in all areas of the technology cost and durability targets (Papageorgopoulos, 2012, “Fuel Cells, 2012 Annual Merit Review and Peer Evaluation Meeting,” U.S. Department of Energy, Washington, DC, accessed May 14, 2012, http://www.hydrogen.energy.gov/pdfs/review12/fc_plenary_papageorgopoulos_2012_o.pdf) have not been met. The major contribution to cost comes from tailor-made balance of plant (BoP) components as SOFC-based systems cannot be optimized functionally with off-the shelf commercial items, and cost targets for BoP and stack cannot be met without volume manufacturing (Föger, 2008, “Materials Basics for Fuel Cells,” Materials for Fuel Cells, M. Gasik ed., Woodhead Publishing, Cambridge, UK, pp. 6–63). Reliability issues range from stack degradation and mechanical failure and BoP component failure to grid-interface issues in a grid-connected distributed generation system. Resolving some of these issues are a key to the commercial viability of SOFC-based microcombined heat and power (CHP) systems. This paper highlights some of the technical and practical challenges facing developers of SOFC-based products.

References

References
1.
Powell
,
M.
,
Meinhardt
,
K.
,
Sprenkle
,
V.
,
Chick
,
L.
, and
McVay
,
G.
,
2012
, “
Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation
,”
J. Power Sources
,
205
, pp.
377
384
.
2.
Föger
,
K.
,
2008
, “
Materials Basics for Fuel Cells
,”
Materials for Fuel Cells
,
M.
Gasik
ed.,
Woodhead Publishing
, Cambridge, UK, pp.
6
63
.
3.
CFCL, 2014, “
Ceramic Fuel Cells Limited Technology Update: Substantial Reduction of Stack Degradation Rates Achieved
,” Ceramic Fuel Cells Ltd., Melbourne, Australia, accessed June 30, 2014, http://www.asx.com.au/asxpdf/20140630/pdf/42qj2zq90rbhxt.pdf
4.
Föger
,
K.
,
2009
, “
Ceramic Fuel Cells Ltd.: Ultra High Efficiency Residential Power Systems
,”
Third European Fuel Cell Technology and Applications Conference
(
EFC
), Rome, Italy, Dec. 15–18, pp. 41–42.http://www.fuelcellmarkets.com/content/images/articles/20091221_Ceramic_Fuel_Cells_Ltd_Piero_Lunghi_Conference_Rome_Dec09.pdf
5.
Papageorgopoulos
,
D.
,
2012
, “
Fuel Cells, 2012 Annual Merit Review and Peer Evaluation Meeting
,” U.S. Department of Energy, Washington, DC, accessed May 14, 2012,
http://www.hydrogen.energy.gov/pdfs/review12/fc_plenary_papageorgopoulos_2012_o.pdf
6.
Sasaki
,
K.
,
Haga
,
K.
,
Yoshizumi
,
T.
,
Minematsu
,
D.
,
Yuki
,
E.
,
Liu
,
R.
,
Uryu
,
C.
,
Oshima
,
T.
,
Ogura
,
T.
,
Shiratori
,
Y.
,
Ito
,
K.
,
Koyama
,
M.
, and
Yokomoto
,
K.
,
2011
, “
Chemical Durability of Solid Oxide Fuel Cells: Influence of Impurities on Long-Term Performance
,”
J. Power Sources
,
196
(
22
), pp.
9130
9140
.
7.
Khan
,
M. S.
,
Lee
,
S.-B.
,
Song
,
R.-H.
,
Lee
,
J.-W.
,
Lim
,
T.-H.
, and
Park
,
S.-J.
,
2016
, “
Fundamental Mechanisms Involved in the Degradation of Nickel–Yttria Stabilized Zirconia (Ni–YSZ) Anode During Solid Oxide Fuel Cells Operation: A Review
,”
Ceram. Int.
,
42
(
1
), pp.
35
48
.
8.
Brus
,
G.
,
Iwai
,
H.
,
Sciazko
,
A.
,
Saito
,
M.
,
Yoshida
,
H.
, and
Szmyd
,
J. S.
,
2015
, “
Local Evolution of Anode Microstructure Morphology in a Solid Oxide Fuel Cell After Long-Term Stack Operation
,”
J. Power Sources
,
288
, pp.
199
205
.
9.
Brus
,
G.
,
Miyoshi
,
K.
,
Iwai
,
H.
,
Saito
,
M.
, and
Yoshida
,
H.
,
2015
, “
Change of an Anode's Microstructure Morphology During the Fuel Starvation of an Anode-Supported Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
21
), pp.
6927
6934
.
10.
Papurello
,
D.
,
Lanzini
,
A.
,
Fiorilli
,
S.
,
Smeacetto
,
F.
,
Singh
,
R.
, and
Santarelli
,
M.
,
2016
, “
Sulfur Poisoning in Ni-Anode Solid Oxide Fuel Cells (SOFCs): Deactivation in Single Cells and a Stack
,”
Chem. Eng. J.
,
283
, pp.
1224
1233
.
11.
Schuler
,
J. A.
,
Gehrig
,
C.
,
Wuillemin
,
Z.
,
Schuler
,
A. J.
,
Wochele
,
J.
,
Ludwig
,
C.
,
Hessler-Wyser
,
A.
, and
Van Herle
,
J.
,
2011
, “
Air Side Contamination in Solid Oxide Fuel Cell Stack Testing
,”
J. Power Sources
,
196
(
17
), pp.
7225
7231
.
12.
Schuler
,
J. A.
,
Yokokawa
,
H.
,
Calderone
,
C. F.
,
Jeangros
,
Q.
,
Wuillemin
,
Z.
,
Hessler-Wyser
,
A.
, and
Van Herle
,
J.
,
2012
, “
Combined Cr and S Poisoning in Solid Oxide Fuel Cell Cathodes
,”
J. Power Sources
,
201
, pp.
112
120
.
13.
Wang
,
F.
,
Yamaji
,
K.
,
Cho
,
D.-H.
,
Shimonosono
,
T.
,
Kishimoto
,
H.
,
Brito
,
M. E.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2012
, “
Effect of Strontium Concentration on Sulfur Poisoning of LSCF Cathodes
,”
Solid State Ionics
,
225
, pp.
157
160
.
14.
Bucher
,
E.
,
Gspan
,
C.
,
Hofer
,
F.
, and
Sitte
,
W.
,
2013
, “
Sulphur Poisoning of the SOFC Cathode Material La0.6Sr0.4CoO3-δ
,”
Solid State Ionics
,
238
, pp.
15
23
.
15.
Bucher
,
E.
,
Gspan
,
C.
, and
Sitte
,
W.
,
2015
, “
Degradation and Regeneration of the SOFC Cathode Material La0.6Sr0.4CoO3-δ in SO2-Containing Atmospheres
,”
Solid State Ionics
,
272
, pp.
112
120
.
16.
Xie
,
J.
,
Jub
,
Y.-W.
, and
Ishihara
,
T.
,
2013
, “
Influence of Sulfur Impurities on the Stability of La0.6Sr0.4Co0.2Fe0.8O3 Cathode for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
249–250
, pp.
177
183
.
17.
Park
,
E.
,
Taniguchi
,
S.
,
Daio
,
T.
,
Chou
,
J.-T.
, and
Sasaki
,
K.
,
2014
, “
Influence of Cathode Polarization on the Chromium Deposition Near the Cathode/Electrolyte Interface of SOFC
,”
Int. J. Hydrogen Energy
,
39
(
3
), pp.
1463
1475
.
18.
Blum
,
L.
,
Batfalsky
,
P.
,
Fang
,
Q.
,
de Haart
,
L. G. J.
,
Malzbender
,
J.
,
Margaritis
,
N.
,
Menzler
,
N. H.
, and
Peters
,
Ro.
,
2015
, “
SOFC Stack and System Development at Forschungszentrum Jülich
,”
J. Electrochem. Soc.
,
162
(10), pp.
F1199
F1205
.
19.
Nakajo
,
A.
,
Mueller
,
F.
,
Brouwer
,
J.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2012
, “
Mechanical Reliability and Durability of SOFC Stacks—Part I: Modelling of the Effect of Operating Conditions and Design Alternatives on the Reliability
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9249
9268
.
20.
Nakajo
,
A.
,
Mueller
,
F.
,
Brouwer
,
J.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2012
, “
Mechanical Reliability and Durability of SOFC Stacks—Part II: Modelling of Mechanical Failures During Ageing and Cycling
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9269
9286
.
21.
Hagen
,
A.
,
Hendriksen
,
P. V.
,
Frandsen
,
H. L.
,
Thydén
,
K.
, and
Barford
,
R.
,
2009
, “
Durability Study of SOFCs Under Cycling Current Load Conditions
,”
Fuel Cells
,
9
(
6
), pp.
814
822
.
22.
Dikwal
,
C.
,
Bujalski
,
W.
, and
Kendall
,
K.
,
2009
, “
The Effect of Temperature Gradients on Thermal Cycling and Isothermal Ageing of Microtubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
193
(
1
), pp.
241
248
.
23.
Föger
,
K.
, and
Payne
,
R.
,
2014
, “
Ceramic Fuel Cells BlueGen—Market Introduction Experience
,” 11th European SOFC & SOE Forum, Lucerne, Switzerland, July 4–7, Paper No. A0503.
24.
Payne
,
R.
,
Love
,
J.
, and
Kah
,
M.
,
2009
, “
Generating Electricity at 60% Electrical Efficiency From 1-2 kWe SOFC Products
,”
ECS Trans.
,
25
(
2
), pp.
231
239
.
25.
Love
,
J.
,
Amarasinghe
,
S.
,
Selvey
,
D.
,
Zheng
,
X.
, and
Christiansen
,
L.
, 2009, “
Development of SOFC Stacks at Ceramic Fuel Cells Limited
,”
ECS Trans.
,
25
(
2
), pp. 115–124.
26.
Badwal
,
S. P. S.
,
Deller
,
R.
,
Föger
,
K.
,
Ramprakash
,
Y.
, and
Zhang
,
J. P.
,
1997
, “
Interaction Between Chromia Forming Alloy Interconnects and Air Electrode of SOFCs
,”
Solid State Ionics
,
99
, pp.
297
310
.
27.
Badwal
,
S. P. S.
,
Föger
,
K.
, Zheng, X. G., and Jaffrey, D., 1999, “
Fuel Cell Interconnect Device
,” U.S. Patent No.
US5942349 A
https://www.google.tl/patents/US5942349.
28.
Schuler
,
J. A.
,
2012
, “
Chromium Poisoning: the Needle in the SOFC Stack
,”
Ph.D. thesis
, EPFL, Lausanne, Switzerland.https://infoscience.epfl.ch/record/180625
29.
Wang
,
C.
,
O'Donnell
,
K.
,
Jian
,
L.
, and
Jiang
,
S.
,
2015
, “
Co-Deposition and Poisoning of Chromium and Sulfur Contaminants on La0.6Sr0.4Co0.2Fe0.8O3-d Cathodes of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
F507
F512
.
30.
Wang
,
C. C.
,
Chen
,
K.
, and
Jiang
,
S.
,
2014
, “
Sulfur Deposition and Poisoning of La0.6Sr0.4Co0.2Fe0.8O3-d Cathode Materials of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1133
F1139
.
31.
Zhao
,
L.
,
Cheng
,
Y.
, and
Jiang
,
S.
,
2015
, “
A New, High Electrochemical Activity and Chromium Tolerant Cathode for Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
40
(
45
), pp.
15622
15631
.
32.
Chen
,
K.
,
Ai
,
N.
,
O'Donnell
,
K. M.
, and
Jiang
,
S. P.
,
2015
, “
Highly Chromium Contaminant Tolerant BaO Infiltrated La0.6Sr0.4Co0.2Fe0.8O3−δ
,”
Phys. Chem. Chem. Phys.
,
17
(
7
), pp.
4870
4874
.
33.
Chen
,
K.
,
Fang
,
L.
,
Zhang
,
T.
, and
Jiang
,
S.
,
2014
, “
New Zinc and Bismuth Doped Glass Sealants With Substantially Suppressed Boron Deposition and Poisoning for Solid Oxide Fuel Cells
,”
J. Mater. Chem. A
,
2
(
43
), pp.
18655
18665
.
34.
Bucher
,
E.
,
Gspan
,
C.
,
Hofer
,
F.
, and
Sitte
,
W.
,
2011
, “
Post-Test Analysis of Silicon Poisoning and Phase Decomposition in the SOFC Cathode Material La0.5Sr0.4Co0.2Fe0.8O3-δ by Transmission Electron Microscopy
,”
Solid State Ionics
,
230
, pp.
7
11
.
35.
Bucher
,
E.
,
Sitte
,
W.
,
Klauser
,
F.
, and
Bertel
,
E.
,
2012
, “
Impact of Humid Atmospheres on Oxygen Exchange Properties, Surface-Near Elemental Composition, and Surface Morphology of La0.6Sr0.4CoO3−δ
,”
Solid State Ionics
,
208
, pp.
43
51
.
36.
Bucher
,
E.
,
Sitte
,
W.
,
Klauser
,
F.
, and
Bertel
,
E.
,
2011
, “
Oxygen Exchange Kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600 °C in Dry and Humid Atmospheres
,”
Solid State Ionics
,
191
(
1
), pp.
61
67
.
37.
Schrödla
,
N.
,
Buchera
,
E.
,
Eggera
,
A.
,
Kreimlb
,
P.
,
Teichertb
,
C.
,
Hoeschenc
,
T.
, and
Sitte
,
W.
,
2015
, “
Long-Term Stability of the IT-SOFC Cathode Materials La0.6Sr0.4CoO3-δ and La2NiO4+δ Against Combined Chromium and Silicon Poisoning
,”
Solid State Ionics
,
276
, pp.
62
71
.
38.
Zhang
,
X. G.
,
Aruliah
,
S. K.
,
Amarasinghe
,
S.
, and
Kah
,
M.
,
2015
, “
Electrochemical Energy Conversion Devices and Cells, and Positive Electrode-Side Materials for Them
,” Patent No.
WO2015103673 A1
.http://www.google.ch/patents/WO2015103673A1?hl=de&cl=en
39.
Ahmed
,
K.
, and
Föger
,
K.
,
2010
, “
Fuel Processing for High Temperature High Efficiency Fuel Cells
,”
Ind. Eng. Chem. Res.
,
49
(
7
), pp.
7239
7256
.
40.
Li
,
M.
,
Hua
,
B.
,
Luo
,
J.
,
Jiang
,
S.
,
Pu
,
J.
,
Chi
,
B.
, and
Li
,
J.
,
2016
, “
Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration
,”
ACS Appl. Mater. Interfaces
,
8
(
16
), pp.
10293
10301
.
41.
Haga
,
K.
,
Adachi
,
S.
,
Shiratori
,
Y.
,
Itoh
,
K.
, and
Sasaki
,
K.
,
2008
, “
Poisoning of SOFC Anodes by Various Fuel Impurities
,”
Solid State Ionics
,
179
(27–32), pp.
1427
1431
.
42.
Madi
,
H.
,
Lanzini
,
A.
,
Diethelm
,
S.
,
Papurello
,
D.
,
Van Herle
,
J.
,
Lualdi
,
M.
,
Larsen
,
J. G.
, and
Santarelli
,
M.
,
2015
, “
Solid Oxide Fuel Cell Anode Degradation by the Effect of Siloxanes
,”
J. Power Sources
,
279
, pp.
460
471
.
43.
Hauch
,
A.
,
Ebbesen
,
S. D.
,
Jensen
,
S. H.
, and
Mogensen
,
M.
,
2008
, “
Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode
,”
J. Electrochem. Soc.
,
155
(
11
), pp.
B1184
B1193
.
44.
Sasaki
,
K.
,
Yoshizumi
,
K. T.
,
Haga
,
K.
,
Yoshitomi
,
H.
,
Hosoi
,
T.
,
Shiratori
,
Y.
, and
Taniguchi
,
S.
,
2013
, “
Chemical Degradation of SOFCs: External Impurity Poisoning and Internal Diffusion-Related Phenomena
,”
ECS Trans.
,
57
(
1
), pp.
315
323
.
45.
Twigg
,
M. W.
,
1996
,
Catalyst Handbook
, 2nd ed.,
Manson Publishing
,
London
.
46.
Rostrup-Nielsen
,
J. R.
,
1984
,
Catalytic Steam Reforming, Catalysis Science & Technology
, Vol.
5
,
Springer-Verlag
,
New York
.
47.
Bhattacharyya
,
D.
, and
Rengaswamy
,
R.
,
2009
, “
A Review of Solid Oxide Fuel Cell (SOFC) Dynamic Models
,”
Ind. Eng. Chem. Res.
,
48
(
13
), pp.
6068
6086
.
48.
Charpentier
,
J. C.
,
2009
, “
Perspective on Multiscale Methodology for Product Design and Engineering
,”
Comput. Chem. Eng.
,
33
(
5
), pp.
936
946
.
49.
Rautanen
,
M.
,
Pulkkinen
,
V.
,
Tallgren
,
J.
,
Himanen
,
O.
, and
Kiviaho
,
J.
,
2015
, “
Effect of the First Heat up Procedure on Mechanical Properties of Solid Oxide Fuel Cell Sealing Materials
,”
J. Power Sources
,
284
, pp.
511
516
.
50.
Dev
,
B.
,
Walter
,
M. E.
,
Arkenberg
,
G.
, and
Schwarz
,
S.
,
2014
, “
Mechanical and Thermal Characterization of Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells
,”
J. Power Sources
,
245
, pp.
958
966
.
51.
Dev
,
B.
, and
Walter
,
M. E.
,
2015
, “
Comparative Study of the Leak Characteristics of Two Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells
,”
Fuel Cells
,
15
(
1
), pp.
115
130
.
52.
Mahapatra
,
M. K.
, and
Lu
,
K.
,
2010
, “
Seal Glass for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
21
), pp.
7129
7139
.
53.
Rautanen
,
M.
,
Himanen
,
O.
,
Saarinen
,
V.
, and
Kiviaho
,
J.
,
2009
, “
Compression Properties and Leakage Tests of Mica-Based Seals for SOFC Stacks
,”
Fuel Cells
,
9
(5), pp.
753
759
.
54.
Chang
,
H. T.
,
Lin
,
C. K.
, and
Liu
,
C. K.
,
2009
, “
High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell
,”
J. Power Sources
,
189
(
2
), pp.
1093
1099
.
55.
Chang
,
H. T.
,
Lin
,
C. K.
, and
Liu
,
C. K.
,
2010
, “
Effect of Crystallization on the High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
10
), pp.
3159
3165
.
56.
Lahl
,
N.
,
Bahadur
,
D.
,
Singh
,
K.
,
Singheiser
,
L.
, and
Hilpert
,
K.
,
2002
, “
Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
149
(
5
), pp.
A607
A614
.
57.
Tong
,
J.
,
Hah
,
M.
,
Singhal
,
S. C.
, and
Gong
,
Y.
,
2012
, “
Influence of Al2O3 Addition on the Properties of BiO2-BaO-SiO2-RxOy (R = K, Zn, etc.) Glass Sealant
,”
J. Non-Cryst. Solids
,
358
(6–7), pp.
1038
1043
.
58.
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2011
, “
Study of Geometric Stability and Structural Integrity of Self-Healing Glass System Used in Solid Oxide Fuel Cells
,”
J. Power Sources
,
196
(
4
), pp.
1750
1761
.
59.
Stephens
,
E.
,
Veltrano
,
J.
,
Koeppel
,
B.
,
Chou
,
Y.
,
Sun
,
X.
, and
Khaleel
,
M.
,
2009
, “
Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models
,”
J. Power Sources
,
193
(
2
), pp.
625
631
.
60.
Meinhardt
,
K. D.
,
Kim
,
D. S.
,
Chou
,
Y. S.
, and
Weil
,
K. S.
,
2008
, “
Synthesis and Properties of a Barium Aluminosilicate Solid Oxide Fuel Cell Glass Ceramic Sealant
,”
J. Power Sources
,
182
(
1
), pp.
188
196
.
61.
Harun
,
N. F.
,
Tucker
,
D.
, and
Adams
,
T. A.
,
2016
, “
Impact of Fuel Composition Transients on SOFC Performance in Gas Turbine Hybrid Systems
,”
Appl. Energy
,
164
, pp.
446
461
.
62.
Hiskens
,
I. A.
, and
Flemming
,
E. M.
,
2008
, “
Control of Inverter-Connected Sources in Autonomous Microgrids
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
586
590
.
63.
Singh
,
B. K.
,
Gaonkar
,
D. N.
,
Aithal
,
R. S.
, and
Sharma
,
G.
,
2011
, “
Modeling and Performance Analysis of Solid Oxide Fuel Cell Based Distributed Generation System
,”
Int. Energy J.
,
12
, pp.
123
134
.http://www.rericjournal.ait.ac.th/index.php/reric/article/viewFile/902/398
64.
Zhang
,
L.
,
Jiang
,
J.
,
Cheng
,
H.
,
Deng
,
Z.
, and
Li
,
X.
,
2015
, “
Control Strategy for Power Management, Efficiency-Optimization and Operating-Safety of a 5-kW Solid Oxide Fuel Cell System
,”
Electrochim. Acta
,
177
, pp.
237
249
.
65.
Shearing
,
P. R.
,
Brett
,
D. J. L.
, and
Brandon
,
N. P.
,
2010
, “
Towards Intelligent Engineering of SOFC Electrodes: A Review of Advanced Microstructural Characterisation Techniques
,”
Int. Mater. Rev.
,
55
(
6
), pp.
347
363
.
66.
Fennema
,
E.
,
2013
, “
Kiwa Gastec Report No. GT-130016 to GasTerra B.V
,” Kiwa Technology B.V, Apeldoorn, The Netherlands.
67.
CFCL, 2015, “
Technology Update: Efficiency Maintained Over Extreme Operating Range
,” Ceramic Fuel Cells Ltd., Melbourne, Australia, accessed Feb. 11, 2015, http://www.asx.com.au/asxpdf/20150211/pdf/42wjlfgbj404ls.pdf
68.
Hajimolana
,
S. A.
,
Hussain
,
M. A.
,
Daud
,
W. M. A. W.
,
Soroush
,
M.
, and
Shamiri
,
A.
,
2011
, “
Mathematical Modelling of Solid Oxide Fuel Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1893
1917
.
69.
Barelli
,
L.
,
Bidini
,
G.
,
Gallorini
,
F.
, and
Ottaviano
,
P. A.
,
2013
, “
Design Optimization of a SOFC-Based CHP System Through Dynamic Analysis
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
354
369
.
70.
Zhang
,
L.
,
Li
,
X.
,
Jiang
,
J.
,
Li
,
S.
,
Yang
,
J.
, and
Li
,
J.
,
2015
, “
Dynamic Modelling and Analysis of a 5-kW Solid Oxide Fuel Cell System From the Perspectives of Cooperative Control of Thermal Safety and High Efficiency
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
456
476
.
71.
Greco
,
A.
,
Sorce
,
A.
,
Littwin
,
R.
,
Costamagna
,
P.
, and
Magistri
,
L.
,
2014
, “
Reformer Faults in SOFC Systems: Experimental and Modeling Analysis, and Simulated Fault Maps
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21700
21713
.
72.
Xie
,
Y.
, and
Xue
,
X.
,
2012
, “
Multi-Scale Electrochemical Reaction Anode Model for Solid Oxide Fuel Cells
,”
J. Power Sources
,
209
, pp.
81
89
.
73.
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2010
, “
Review on Modeling Development for Multiscale Chemical Reactions Coupled Transport Phenomena in Solid Oxide Fuel Cells
,”
Appl. Energy
,
87
(
5
), pp.
1461
1476
.
74.
Yuan
,
K.
,
Ji
,
Y.
, and
Chung
,
J. N.
,
2009
, “
Physics-Based Modeling of a Low-Temperature Solid Oxide Fuel Cell With Consideration of Microstructure and Interfacial Effects
,”
J. Power Sources
,
194
(
2
), pp.
908
919
.
75.
Lynch
,
M. E.
,
Ding
,
D.
,
Harris
,
W. M.
,
Lombardo
,
J. J.
,
Nelson
,
G. J.
,
Chiu
,
W. K. S.
, and
Liu
,
M.
,
2013
, “
Flexible Multiphysics Simulation of Porous Electrodes: Conformal to 3D Reconstructed Microstructures
,”
Nano Energy
,
2
(
1
), pp.
105
115
.
76.
Amiri
,
A.
,
Vijay
,
P.
,
Tadé
,
M. O.
,
Ahmed
,
K.
,
Ingram
,
G. D.
,
Pareek
,
V.
, and
Utikar
,
R.
,
2015
, “
Solid Oxide Fuel Cell Reactor Analysis and Optimisation Through a Novel Multiscale Modelling Strategy
,”
Comput. Chem. Eng.
,
78
, pp.
10
23
.
77.
Yuan
,
W. K.
,
2007
, “
Targeting the Dominating-Scale Structure of a Multiscale Complex System: A Methodological Problem
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3335
3345
.
78.
Wei
,
J.
,
2007
, “
Coordination of Multi-Scales in Chemical Engineering
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3326
3334
.
79.
Zakrzewska
,
B.
,
Pianko-Oprych
,
P.
, and
Jaworski
,
Z.
,
2014
, “
Multiscale Modeling of Solid Oxide Fuel Cell Systems
,”
Chem. Ing. Tech.
,
86
(
7
), pp.
1029
1043
.
80.
Pohjoranta
,
A.
,
Halinen
,
M.
,
Pennanen
,
J.
, and
Kiviaho
,
J.
,
2014
, “
Multivariable Linear Regression for SOFC Stack Temperature Estimation Under Degradation Effects
,”
J. Electrochem. Soc.
,
161
(
4
), pp.
F425
F433
.
81.
Cimenti
,
M.
, and
Hill
,
J. M.
,
2009
, “
Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes
,”
Energies
,
2
(
2
), pp.
377
410
.
82.
Chen
,
F.
,
Zha
,
S.
,
Dong
,
J.
, and
Liu
,
M.
,
2004
, “
Pre-reforming of Propane for Low-Temperature SOFCs
,”
Solid State Ionics
,
166
(3–4), pp.
269
273
.
83.
Ahmed
,
K.
,
Gamman
,
J.
, and
Föger
,
K.
,
2002
, “
Demonstration of LPG-Fueled Solid Oxide Fuel Cell Systems
,”
Solid State Ionics
,
152–153
, pp.
485
492
.
84.
Kim
,
Y.
,
Hong
,
S.
,
Nam
,
S.
,
Seo
,
S.
,
Yoo
,
Y.
, and
Lee
,
S.
,
2011
, “
Development of 1 kW SOFC Power Package for Dual-Fuel Operation
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10247
10254
.
You do not currently have access to this content.