In order to facilitate valid solid oxide fuel cell (SOFC) temperature control scheme, a nonlinear identification method of SOFC temperature dynamic behaviors is proposed using an autoregressive network with exogenous inputs (NARX) model, whose nonlinear function is described by a least-squares support vector regression (LSSVR) method with radial basis kernel function (RBF). During the identifying process, a particle swarm optimization (PSO) algorithm is introduced to optimize the parameters of LSSVR. On the other hand, a mechanism model is developed to sample the training data to regress the NARX model. Investigations are conducted to analyze the effects of training data size and PSO fitness function on the accuracy of the NARX model. The results demonstrate that the NARX model with tenfold cross-validation fitness function and large size data is precise enough in predicting the SOFC temperature dynamic behaviors. The maximum errors of cathode and anode outlet temperature are 0.3081 K and 0.3293 K, respectively. Furthermore, the simulation speed of NARX model is much faster than the mechanism model because NARX model avoids the internal complex computation process. The training time of the NARX model with large size data is about 1.2 s. For a 20,000 s simulation, the predicting time of the NARX model is about 0.2 s, while the mechanism model is about 36 s. In consideration of its high computational speed and accuracy, NARX model is a powerful candidate for valid multivariable model predictive control (MPC) schemes.

References

References
1.
EIA
,
2013
, “
International Energy Outlook 2013
,” United States Department of Energy, Washington, DC, Report No.
DOE/EIA-0484
.https://www.eia.gov/outlooks/ieo/pdf/0484(2013).pdf
2.
Asif
,
M.
, and
Muneer
,
T.
,
2007
, “
Energy Supply, Its Demand and Security Issues for Developed and Emerging Economies
,”
Renewable Sustainable Energy Rev.
,
11
(
7
), pp.
1388
1413
.
3.
Hosseini
,
M.
,
Dincer
,
I.
,
Ahmadi
,
P.
,
Avvall
,
H. B.
, and
Ziaasharhagh
,
M.
,
2013
, “
Thermodynamic Modelling of an Integrated Solid Oxide Fuel Cell and Micro Gas Turbine System for Desalination Purposes
,”
Int. J. Energy Res.
,
37
(
5
), pp.
426
434
.
4.
Tsai
,
A.
,
Tucker
,
D.
, and
Emami
,
T.
,
2014
, “
Adaptive Control of a Nonlinear Fuel Cell-Gas Turbine Balance of Plant Simulation Facility
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
6
), p.
061002
.
5.
McLarty
,
D.
,
Kuniba
,
Y.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2012
, “
Experimental and Theoretical Evidence for Control Requirements in Solid Oxide Fuel Cell Gas Turbine Hybrid Systems
,”
J. Power Sources
,
209
, pp.
195
203
.
6.
Ferrari
,
M. L.
,
2011
, “
Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations
,”
J. Power Sources
,
196
(
5
), pp.
2682
2690
.
7.
Larosa
,
L.
,
Traverso
,
A.
, and
Zaccaria
,
V.
,
2015
, “
Ambient Temperature Impact on Pressurized SOFC Hybrid Systems
,”
ASME
Paper No. GT2015-42364.
8.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
(
1
), pp.
303
315
.
9.
Cai
,
Y.
,
Zhu
,
D.
,
Li
,
X.
,
Ma
,
T.
,
Deng
,
Z.
, and
Li
,
X.
,
2011
, “
Application of Cascade Control in Solid Oxide Fuel Cell Thermal Management System
,” J. Chem. Eng. Technol.,
1
, pp.
22
28
(in Chinese).
10.
Wu
,
X.
,
Zhu
,
X.
,
Cao
,
G.
, and
Tu
,
H.
,
2008
, “
SOFC Temperature Evaluation Based on an Adaptive Fuzzy Controller
,”
J. Zhejiang Univ. Sci. A
,
9
(
5
), pp.
688
694
.
11.
Hajimolana
,
S. A.
,
Tonekabonimoghadam
,
S. M.
,
Hussain
,
M. A.
,
Chakrabarti
,
M. H.
,
Jayakumar
,
N. S.
, and
Hashim
,
M. A.
,
2013
, “
Thermal Stress Management of a Solid Oxide Fuel Cell Using Neural Network Predictive Control
,”
Energy
,
62
, pp.
320
329
.
12.
Wu
,
X.
,
Zhu
,
X.
,
Cao
,
G.
, and
Tu
,
H.
,
2008
, “
Predictive Control of SOFC Based on a GA-RBF Neural Network Model
,”
J. Power Sources
,
179
(
1
), pp.
232
239
.
13.
So-Ryeok
,
O.
,
Jing
,
S.
,
Herb
,
D.
, and
Joel
,
K.
,
2013
, “
Dynamic Characteristics and Fast Load Following of 5-kW Class Tubular Solid Oxide Fuel Cell/Micro-Gas Turbine Hybrid Systems
,”
Int. J. Energy Res.
,
37
(
10
), pp.
1242
1255
.
14.
Zhang
,
H.
,
Weng
,
S.
,
Su
,
M.
, and
Zhang
,
W.
,
2010
, “
Control Performance Study on the Molten Carbonate Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061006
.
15.
Zhang
,
X.
,
Li
,
J.
,
Li
,
G.
, and
Feng
,
Z.
,
2006
, “
Dynamic Modeling of a Hybrid System of the Solid Oxide Fuel Cell and Recuperative Gas Turbine
,”
J. Power Sources
,
163
(
1
), pp.
523
531
.
16.
Huo
,
H.
,
Zhong
,
Z.
,
Zhu
,
X.
, and
Tu
,
H.
,
2008
, “
Nonlinear Dynamic Modeling for a SOFC Stack by Using a Hammerstein Model
,”
J. Power Sources
,
175
(
1
), pp.
441
446
.
17.
Jurado
,
F.
,
2004
, “
Modeling SOFC Plants on the Distribution System Using Identification Algorithms
,”
J. Power Sources
,
129
(
2
), pp.
205
215
.
18.
Spivey
,
B. J.
, and
Edgar
,
T. F.
,
2012
, “
Dynamic Modeling, Simulation, and MIMO Predictive Control of a Tubular Solid Oxide Fuel Cell
,”
J. Process Control
,
22
(
8
), pp.
1502
1520
.
19.
Colclasure
,
A. M.
,
Sanandaji
,
B. M.
,
Vincent
,
T. L.
, and
Kee
,
R. J.
,
2011
, “
Modeling and Control of Tubular Solid-Oxide Fuel Cell Systems—I: Physical Models and Linear Model Reduction
,”
J. Power Sources
,
196
(
1
), pp.
196
207
.
20.
Sanandaji
,
B. M.
,
Vincent
,
T. L.
,
Colclasure
,
A. M.
, and
Kee
,
R. J.
,
2011
, “
Modeling and Control of Tubular Solid-Oxide Fuel Cell Systems—II: Nonlinear Model Reduction and Model Predictive Control
,”
J. Power Sources
,
196
(
1
), pp.
208
217
.
21.
Palsson
,
J.
, and
Selimovic
,
A.
,
2001
, “
Design and Off-Design Predictions of a Combined SOFC and Gas Turbine System
,”
ASME
Paper No. 2001-GT-0379.
22.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2008
, “
Ejector Model for High Temperature Fuel Cell Hybrid Systems: Experimental Validation at Steady-State and Dynamic Conditions
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
4
), p.
041005
.
23.
Larosa
,
L.
,
Ferrari
,
M. L.
,
Magistri
,
L.
, and
Massardo
,
A.
,
2013
, “
SOFC/MGT Coupling: Different Options With Standard Boosters
,”
ASME
Paper No. GT2013-94072.
24.
Zhang
,
W.
,
2012
, “
The Simulation of the Novel Hybrid System of Solid Oxide Fuel Cell and Gas Turbine
,” Master thesis, Shanghai Jiao Tong University, Shanghai, China.
25.
Zhou
,
D.
,
Mei
,
J.
,
Chen
,
J.
,
Zhang
,
H.
, and
Weng
,
S.
,
2014
, “
Parametric Analysis on Hybrid System of Solid Oxide Fuel Cell and Micro Gas Turbine With CO2 Capture
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
5
), p.
051001
.
26.
Agnew
,
G. D.
,
Townsend
,
J.
,
Moritz
,
R. R.
,
Bozzolo
,
M.
,
Berenyi
,
S.
, and
Duge
,
R.
,
2004
, “
Progress in the Development of a Low Cost 1 MW SOFC Hybrid
,”
ASME
Paper No. GT2004-53350.
27.
Wang
,
L.
,
Zhang
,
H.
, and
Weng
,
S.
,
2008
, “
Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume–Resistance Characteristic Modeling Technique
,”
J. Power Sources
,
177
(
2
), pp.
579
589
.
28.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell—I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1
), pp.
120
136
.
29.
Xi
,
H.
,
2007
, “
Dynamic Modeling and Control of Planar SOFC Power Systems
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.http://hdl.handle.net/2027.42/126593
30.
Wang
,
C.
, and
Nehrir
,
H. M.
,
2007
, “
A Physically Based Dynamic Model for Solid Oxide Fuel Cells
,”
IEEE Trans. Energy Convers.
,
22
(
4
), pp.
887
897
.
31.
Zhang
,
H.
,
Weng
,
S.
, and
Su
,
M.
,
2005
, “
Dynamic Modeling and Simulation of Distributed Parameter Heat Exchanger
,”
ASME
Paper No. GT2005-68293.
32.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas Shift—I: Intrinsic Kinetics
,”
AIChE J.
,
35
(
1
), pp.
88
96
.
33.
Asgari
,
H.
,
Chen
,
X.
,
Sainudiin
,
R.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2014
, “
Modeling and Simulation of the Start-Up Operation of a Heavy-Duty Gas Turbine by Using NARX Models
,”
ASME
Paper No. GT2014-25056.
34.
Liu
,
B.
,
Shen
,
Q.
,
Su
,
H.
, and
Chu
,
J.
,
2003
, “
A Nonlinear Predictive Control Algorithm Based on Fuzzy Online Modeling and Discrete Optimization
,”
IEEE International Conference on Systems, Man and Cybernetics
(
ICSMC
), Washington, DC, Oct. 5–8, Vol.
1
, pp.
816
821
.
35.
Vapnik
,
V.
,
1995
,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
36.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
37.
Suykens
,
J. A. K.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.
38.
Ma
,
N.
,
Xu
,
W.
,
Wang
,
X.
,
Wei
,
Z.
, and
Pang
,
G.
,
2011
, “
Prediction Method for Surface Finishing of Spiral Bevel Gear Tooth Based on Least Square Support Vector Machine
,”
J. Cent. South Univ. Technol.
,
18
(
3
), pp.
685
689
.
39.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,” IEEE International Conference on Neural Networks (
ICNN
), Perth, WA, Nov. 27–Dec. 1, Vol. 4, pp.
1942
1948
.
40.
Vlachogiannis
,
J. G.
, and
Lee
,
K. Y.
,
2006
, “
A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems
,”
IEEE Trans. Power Syst.
,
21
(
4
), pp.
1718
1728
.
41.
Yin
,
H.
,
Zhu
,
Z.
, and
Ding
,
F.
,
2011
, “
Model Order Determination Using the Hankel Matrix of Impulse Responses
,”
Appl. Math. Lett.
,
24
(
5
), pp.
797
802
.
42.
Refaeilzadeh
,
P.
,
Tang
,
L.
, and
Liu
,
H.
,
2009
, “
Cross-Validation
,”
Encyclopedia of Database Systems
,
Springer
,
New York
, pp.
532
538
.
You do not currently have access to this content.