We prepared iodine-doped graphenes by several techniques (electrophilic substitution and nucleophilic substitution methods) in order to incorporate iodine atoms onto the graphene base materials. The physical characterization of prepared samples was performed by using an array of different techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. A series of cathodes using I-doped graphene were prepared and evaluated. Electrochemical performances of the cathodes with and without I-doped graphene indicated an effective improvement, resulting in a better mass transport in the catalyst layer.

References

References
1.
Stumper
,
J.
, and
Stone
,
C.
,
2008
, “
Recent Advances in Fuel Cell Technology at Ballard
,”
J. Power Sources
,
176
(
2
), pp.
468
476
.
2.
Ahluwalia
,
R. K.
, and
Wang
,
X.
,
2008
, “
Fuel Cell Systems for Transportation: Status and Trends
,”
J. Power Sources
,
177
(
1
), pp.
167
176
.
3.
Su
,
H.
,
Jao
,
T.-C.
,
Pasupathi
,
S.
,
Bladergroen
,
B. J.
,
Linkov
,
V.
, and
Pollet
,
B. G.
,
2014
, “
A Novel Dual Catalyst Layer Structured Gas Diffusion Electrode for Enhanced Performance of High Temperature Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
246
, pp.
63
67
.
4.
Zhang
,
J.
,
Xie
,
Z.
,
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Navessin
,
T.
,
Shi
,
Z.
,
Song
,
D.
,
Wang
,
H.
,
Wilkinson
,
D. P.
,
Liu
,
Z.-S.
, and
Holdcroft
,
S.
,
2006
, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
872
891
.
5.
Pei
,
P. C.
, and
Chen
,
H. C.
,
2014
, “
Main Factors Affecting the Lifetime of Proton Exchange Membrane Fuel Cells in Vehicle Applications: A Review
,”
Appl. Energy
,
125
, pp.
60
75
.
6.
Wang
,
Y. J.
,
Zhao
,
N.
,
Fang
,
B.
,
Li
,
H.
,
Bi
,
X. T.
, and
Wang
,
H.
,
2015
, “
Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity
,”
Chem. Rev.
,
115
(
9
), pp.
3433
3467
.
7.
Dai
,
L.
,
Xue
,
Y.
,
Qu
,
L.
,
Choi
,
H. J.
, and
Baek
,
J. B.
,
2015
, “
Metal-Free Catalysts for Oxygen Reduction Reaction
,”
Chem. Rev.
,
115
(
11
), pp.
4823
4892
.
8.
Jiao
,
Y.
,
Zheng
,
Y.
,
Jaroniec
,
M.
, and
Qiao
,
S. Z.
,
2015
, “
Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions
,”
Chem. Soc. Rev.
,
44
(
8
), pp.
2060
2086
.
9.
Liu
,
J.
,
Du
,
X.
,
Yang
,
Y.
,
Deng
,
Y.
,
Hu
,
W.
, and
Zhong
,
C.
,
2015
, “
A One-Step, Clean, Capping-Agent-free Electrochemical Approach to Prepare Pt Nanoparticles With Preferential (100) Orientation and Their High Electrocatalytic Activities
,”
Electrochem. Commun.
,
58
, pp.
6
10
.
10.
Zhou
,
M.
,
Wang
,
H. L.
, and
Guo
,
S. J.
,
2016
, “
Towards High-Efficiency Nanoelectrocatalysts for Oxygen Reduction Through Engineering Advanced Carbon Nanomaterials
,”
Chem. Soc. Rev.
,
45
(
5
), pp.
1273
1307
.
11.
Liang
,
H. W.
,
Wei
,
W.
,
Wu
,
Z. S.
,
Feng
,
X.
, and
Muellen
,
K.
,
2013
, “
Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction
,”
J. Am. Chem. Soc.
,
135
(
43
), pp.
16002
16005
.
12.
Zhou
,
X.
,
Qiao
,
J.
,
Yang
,
L.
, and
Zhang
,
J.
,
2014
, “
A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions
,”
Adv. Energy Mater
,
4
(8), p.
1301523
.
13.
Chen
,
Z.
,
Higgins
,
D.
,
Yu
,
A.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2011
, “
A Review on Non-Precious Metal Electrocatalysts for PEM Fuel Cells
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3167
3192
.
14.
Neto
,
C.
,
Guinea
,
A. H.
,
Peres
,
F.
,
Novoselov
,
N. M. R.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
109
162
.
15.
Johns
,
J. E.
, and
Hersam
,
M. C.
,
2013
, “
Atomic Covalent Functionalization of Graphene
,”
Acc. Chem. Res.
,
46
(
1
), pp.
77
86
.
16.
Wang
,
L.
,
Ambrosi
,
A.
, and
Pumera
,
M.
,
2013
, “
Metal-Free Catalytic Oxygen Reduction Reaction on Heteroatom-Doped Graphene is Caused by Trace Metal Impurities
,”
Angew. Chem. Int. Ed.
,
52
(
51
), pp.
13818
13821
17.
Gong
,
K.
,
Du
,
F.
,
Xia
,
Z.
,
Durstock
,
M.
, and
Dai
,
L.
,
2009
, “
Nitrogen-Doped Carbon Nanotube Arrays With High Electrocatalytic Activity for Oxygen Reduction
,”
Science
,
323
(
5915
), pp.
760
764
.
18.
Wang
,
H.
,
Maiyalagan
,
T.
, and
Wang
,
X.
,
2012
, “
Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications
,”
ACS Catal.
,
2
(
5
), pp.
781
794
.
19.
Geng
,
D.
,
Ding
,
N.
,
Andy Hor
,
T. S.
,
Liu
,
Z.
,
Sun
,
X.
, and
Zong
,
Y.
,
2015
, “
Potential of Metal-Free Graphene Alloy as Electrocatalysts for Oxygen Reduction Reaction
,”
J. Mater. Chem. A
,
3
(
5
), pp.
1795
1810
.
20.
Singh
,
D.
,
Tian
,
J.
,
Mamtani
,
K.
,
King
,
J.
,
Miller
,
J. T.
, and
Ozkan
,
U. S.
,
2014
, “
A Comparison of N Containing Carbon Nanostructures (CNx) and N-Coordinated Iron–Carbon Catalysts (FeNC) for the Oxygen Reduction Reaction in Acidic Media
,”
J. Catal.
,
317
, pp.
30
43
.
21.
Han
,
S.
,
Wu
,
D.
,
Li
,
S.
,
Zhang
,
F.
, and
Feng
,
X.
,
2014
, “
Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices
,”
Adv. Mater.
,
26
(
6
), pp.
849
864
.
22.
Zhang
,
T.
,
Xue
,
Q. Z.
,
Zhang
,
S.
, and
Dong
,
M. D.
,
2012
, “
Theoretical Approaches to Graphene and Graphene-Based Materials
,”
Nano Today
,
7
(
3
), pp.
180
200
.
23.
Yao
,
Z.
,
Nie
,
H. G.
,
Yang
,
Z.
,
Zhou
,
X. M.
,
Liu
,
Z.
, and
Huang
,
S. M.
,
2012
, “
Catalyst-Free Synthesis of Iodine-Doped Graphene Via a Facile Thermal Annealing Process and Its Use for Electrocatalytic Oxygen Reduction in an Alkaline Medium
,”
Chem. Commun.
,
48
(
7
), pp.
1027
1029
.
24.
Medeiros
,
P. V. C.
,
Mascarenhas
,
A. J. S.
,
Mota
,
F. D.
, and
de Castilho
,
C. M. C.
,
2010
, “
A DFT Study of Halogen Atoms Adsorbed on Graphene Layers
,”
Nanotechnology
,
21
(
48
), p.
485701
.
25.
Poh
,
H. L.
,
Šimek
,
P.
,
Sofer
,
Z.
, and
Pumera
,
M.
,
2013
, “
Halogenation of Graphene With Chlorine, Bromine, or Iodine in a Halogen Atmosphere
,”
Chem. Eur. J.
,
19
(
8
), pp.
2655
2662
.
26.
Hoyt
,
R. A.
,
Remillard
,
E. M.
,
Cubuk
,
E. D.
,
Vecitis
,
C. D.
, and
Kaxiras
,
E.
,
2017
, “
Polyiodide-Doped Graphene
,”
J. Phys. Chem. C
,
121
(
1
), pp.
609
615
.
27.
Marinoiu
,
A.
,
Raceanu
,
M.
,
Carcadea
,
E.
,
Mellichio
,
A.
,
Marinescu
,
D.
,
Teodorescu
,
C.
,
Varlam
,
M.
, and
Stefanescu
,
I.
,
2016
, “
Convenient Graphene Based Materials as Potential Candidates for Low Cost Fuel Cell Catalysts
,”
React. Kinet. Mech. Catal.
,
118
(
1
), pp.
281
296
.
28.
Marinoiu
,
A.
,
Teodorescu
,
C.
,
Carcadea
,
E.
,
Raceanu
,
M.
,
Varlam
,
M.
,
Cobzaru
,
C.
, and
Stefanescu
,
I.
,
2015
, “
Graphene-Based Materials Used as the Catalyst Support for PEMFC Applications
,”
Mater. Today
,
2
(
6
), pp.
3797
3805
.
29.
Marinoiu
,
A.
,
Cobzaru
,
C.
,
Carcadea
,
E.
,
Raceanu
,
M.
,
Atkinson
,
I.
,
Varlam
,
M.
, and
Stefanescu
,
I.
,
2015
, “
An Experimental Approach for Finding Low Cost Alternative Support Material in PEM Fuel Cells
,”
Rev. Roum. Chim.
,
61
(4–5), pp.
433
440
.
30.
Marinoiu
,
A.
,
Raceanu
,
M.
,
Carcadea
,
E.
,
Varlam
,
M.
, and
Stefanescu
,
I.
,
2016
, “
Iodinated Carbon Materials for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. Scalable Synthesis and Electrochemical Performances
,”
Arabian J. Chem.
(in press).
31.
Morozan
,
A.
,
Sougrati
,
M. T.
,
Goellner
,
V.
,
Jones
,
D.
,
Stievano
,
L.
, and
Jaouen
,
F.
,
2014
, “
Effect of Furfuryl Alcohol on Metal Organic Framework-Based Fe/N/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
119
, pp.
192
205
.
32.
Zhen
,
Y.
,
Huagui
,
N.
,
Zhi
,
Y.
,
Xuemei
,
Z.
,
Zheng
,
L.
, and
Huang
,
S.
,
2012
, “
Catalyst-Free Synthesis of Iodine-Doped Graphene Via a Facile Thermal Annealing Process and Its Use for Electrocatalytic Oxygen Reduction in an Alkaline Medium
,”
Chem. Commun.
,
48
, pp.
1027
1029
.
33.
Hassan
,
M.
,
Haque
,
E.
,
Minett
,
A. I.
, and
Gomes
,
V. G.
,
2015
, “
Co-Doping of Activated Graphene for Synergistically Enhanced Electrocatalytic Oxygen Reduction Reaction
,”
ChemSusChem
,
8
(
4
), pp.
4040
4048
.
34.
Voiry
,
D.
,
Yang
,
J.
,
Kupferberg
,
J.
,
Fullon
,
R.
,
Lee
,
C.
,
Jeong
,
H. Y.
,
Shin
,
H. S.
, and
Chhowalla
,
M.
,
2016
, “
High-Quality Graphene Via Microwave Reduction of Solution-Exfoliated Graphene Oxide
,”
Science
,
353
(
6306
), pp.
1413
1416
.
35.
Kim
,
H.
,
Renault
,
O.
,
Tyurnina
,
A.
,
Simonato
,
J.-P.
,
Rouchon
,
D.
,
Mariolle
,
D.
,
Chevalier
,
N.
, and
Dijon
,
J.
,
2014
, “
Doping Efficiency of Single and Randomly Stacked Bilayer Graphene by Iodine Adsorption
,”
Appl. Phys. Lett.
,
105
, p.
011605
.
You do not currently have access to this content.