The high voltage cathode material, LiMn1.6Ni0.4O4, was prepared by a polymer-assisted method. The novelty of this work is the substitution of Ni with Mn, which already exists in the crystal structure instead of other isovalent metal ion dopants which would result in capacity loss. The electrochemical performance testing including stability and rate capability was evaluated. The temperature was found to impose a change on the valence and structure of the cathode materials. Specifically, manganese tends to be reduced at a high temperature of 800 °C and leads to structural changes. The manganese substituted LiMn1.5Ni0.5O4 (LMN) has proved to be a good candidate material for Li-ion battery cathodes displaying good rate capability and capacity retention. The cathode materials processed at 550 °C showed a stable performance with negligible capacity loss for 400 cycles.

References

References
1.
Liu
,
J.
, and
Manthiram
,
A.
,
2009
, “
Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4
,”
J. Phys. Chem. C
,
113
(
33
), pp.
15073
15079
.
2.
Shin
,
D. W.
,
Bridges
,
C. A.
,
Huq
,
A.
,
Paranthaman
,
M. P.
, and
Manthiram
,
A.
,
2012
, “
Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5−xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries
,”
Chem. Mater.
,
24
(
19
), pp.
3720
3731
.
3.
Liu
,
J.
, and
Manthiram
,
A.
,
2009
, “
Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification
,”
J. Electrochem. Soc.
,
156
(
1
), pp.
A66
A72
.
4.
Yi
,
T.-F.
,
Xie
,
Y.
,
Zhu
,
Y.-R.
,
Zhu
,
R.-S.
, and
Ye
,
M.-F.
,
2012
, “
High Rate Micron-Sized Niobium-Doped LiMn1.5Ni0.5O4 as Ultra High Power Positive-Electrode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
211
, pp.
59
65
.
5.
Arunkumar
,
T. A.
, and
Manthiram
,
A.
,
2005
, “
Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn1.5−yNi0.5−zMy+zO4 (M = Li, Mg, Fe, Co, and Zn)
,”
Electrochem. Solid-State Lett.
,
8
(
8
), pp.
A403
A405
.
6.
Kunduraci
,
M.
, and
Amatucci
,
G. G.
,
2007
, “
Effect of Oxygen Non-Stoichiometry and Temperature on Cation Ordering in LiMn2−xNixO4 (0.50 ≥ x ≥ 0.36) Spinels
,”
J. Power Sources
,
165
(
1
), pp.
359
367
.
7.
Liu
,
H.
,
Wang
,
J.
,
Zhang
,
X.
,
Zhou
,
D.
,
Qi
,
X.
,
Qiu
,
B.
,
Fang
,
J.
,
Kloepsch
,
R.
,
Schumacher
,
G.
,
Liu
,
Z.
, and
Li
,
J.
,
2016
, “
Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size
,”
ACS Appl. Mater. Interfaces
,
8
(
7
), pp.
4661
4675
.
8.
Hwang
,
T.
,
Lee
,
J. K.
,
Mun
,
J.
, and
Choi
,
W.
,
2016
, “
Surface-Modified Carbon Nanotube Coating on High-Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium Ion Batteries
,”
J. Power Sources
,
322
, pp.
40
48
.
9.
Kumar
,
P. R.
,
Madhusudhanrao
,
V.
,
Nageswararao
,
B.
,
Venkateswarlu
,
M.
, and
Satyanarayana
,
N.
,
2016
, “
Enhanced Electrochemical Performance of Carbon-Coated LiMPO4 (M = Co and Ni) Nanoparticles as Cathodes for High-Voltage Lithium-Ion Battery
,”
J. Solid State Electrochem.
,
20
(
7
), pp.
1855
1863
.
10.
Myung
,
S.-T.
,
Komaba
,
S.
,
Kumagai
,
N.
,
Yashiro
,
H.
,
Chung
,
H.-T.
, and
Cho
,
T.-H.
,
2002
, “
Nano-Crystalline LiNi0.5Mn1.5O4 Synthesized by Emulsion Drying Method
,”
Electrochim. Acta
,
47
(
15
), pp.
2543
2549
.
11.
Xu
,
Y.
,
Chen
,
G.
,
Fu
,
E.
,
Zhou
,
M.
,
Dunwell
,
M.
,
Fei
,
L.
,
Deng
,
S.
,
Andersen
,
P.
,
Wang
,
Y.
,
Jia
,
Q.
, and
Luo
,
H.
,
2013
, “
Nickel Substituted LiMn2O4 Cathode With Durable High-Rate Capability for Li-Ion Batteries
,”
RSC Adv.
,
3
(
40
), pp.
18441
18445
.
12.
Rana
,
J.
,
Glatthaar
,
S.
,
Gesswein
,
H.
,
Sharma
,
N.
,
Binder
,
J. R.
,
Chernikov
,
R.
,
Schumacher
,
G.
, and
Banhart
,
J.
,
2014
, “
Local Structural Changes in LiMn1.5Ni0.5O4 Spinel Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
255
, pp.
439
449
.
13.
Mukai
,
K.
,
Ikedo
,
Y.
,
Kamazawa
,
K.
,
Brewer
,
J. H.
,
Ansaldo
,
E. J.
,
Chow
,
K. H.
,
Mansson
,
M.
, and
Sugiyama
,
J.
,
2013
, “
The Gradient Distribution of Ni Ions in Cation-Disordered Li[Ni1/2Mn3/2]O4 Clarified by Muon-Spin Rotation and Relaxation (μSR)
,”
RSC Adv.
,
3
(
29
), pp.
11634
11639
.
14.
Chemelewski
,
K. R.
, and
Manthiram
,
A.
,
2013
, “
Origin of Site Disorder and Oxygen Nonstoichiometry in LiMn1.5Ni0.5–xMxO4 (M = Cu and Zn) Cathodes With Divalent Dopant Ions
,”
J. Phys. Chem. C
,
117
(
24
), pp.
12465
12471
.
15.
Manthiram
,
A.
,
Chemelewski
,
K.
, and
Lee
,
E.-S.
,
2014
, “
A Perspective on the High-Voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
7
(
4
), pp.
1339
1350
.
16.
Samarasingha
,
P. B.
,
Andersen
,
N. H.
,
Sørby
,
M. H.
,
Kumar
,
S.
,
Nilsen
,
O.
, and
Fjellvåg
,
H.
,
2016
, “
Neutron Diffraction and Raman Analysis of LiMn1.5Ni0.5O4 Spinel Type Oxides for Use as Lithium Ion Battery Cathode and Their Capacity Enhancements
,”
Solid State Ionics
,
284
, pp.
28
36
.
17.
Yamada
,
A.
,
1996
, “
Lattice Instability in Li(LixMn2−x)O4
,”
J. Solid State Chem.
,
122
(
1
), pp.
160
165
.
You do not currently have access to this content.