In this paper, the electrochemical impedance spectroscopy (EIS) method is applied through a transient in solid oxide fuel cell (SOFC) to obtain the dynamic modeling. Instead of measuring the current response of a fuel cell to a small sinusoidal perturbation in voltage at each frequency, the Hammerstein–Wiener model identification method is applied through a one transient who leads to the significant decrease of computational costs. Dynamic responses are determined as the solutions of coupled partial differential equations derived from conservation laws of charges, mass, momentum, and energy with electrochemical kinetics by using Butler–Volmer model and gas diffusion on the extended Maxwell-Stefan species equations or dusty gas model (DGM). Because the system consisted of electrical and mechanical components, the behavior of the system was nonlinear. The obtained results are in good qualitative agreement with experimental data published in literatures shown the effectiveness of the propose model. Finally, a parametric study based on the obtained model is performed to study the effects of channel length, inlet H2 concentration, inlet velocity, and cell temperature in Nyquist plots and the voltage responses to step changes in the fuel concentration and load current. The model can be useful as a benchmark for illustrating different designs and control schemes.

References

References
1.
Jamalabadi
,
M. Y. A.
,
2013
, “
Electrochemical and Exergetic Modeling of a CHP System Using Tubular Solid Oxide Fuel Cell and Mini Gas Turbine
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
5
), p.
051007
.
2.
Jamalabadi
,
M. Y. A.
,
2014
, “
Economic and Environmental Modelling of a MGT-SOFC Hybrid Combined Heat and Power System for Ship Applications
,”
Middle-East J. Sci. Res.
,
22
(
4
), pp.
561
574
.
3.
Jamalabadi
,
M. Y. A.
,
Park
,
J. H.
, and
Lee
,
C. Y.
,
2014
, “
Economic and Environmental Modelling of a Micro Gas Turbine and Solid Oxide Fuel Cell Hybrid Combined Heat and Power System
,”
Int. J. Appl. Environ. Sci.
,
9
(
4
), pp.
1769
1781
.
4.
Jelavic
,
M.
,
Peric
,
N.
, and
Petrovic
,
I.
,
2006
, “
Identification of Wind Turbine Model for Controller Design
,” 12th International Conference on Power Electronics and Motion Control (
EPE-PEMC 2006
), Portorož, Slovenia, Aug. 30–Sept. 1, pp.
1608
1613
.
5.
Koveos
,
Y.
, and
Tzes
,
A.
,
2009
, “
Modelling and Identification of Resonance Fluid Actuator
,” Third IEEE Multi-Conference on Systems and Control (
MSC 2009
), St. Petersburg, Russia, July 8–10, pp.
560
565
.
6.
Laghrouche
,
S.
,
Ahmed
,
F. S.
,
El Baghdouri
,
M.
,
Wack
,
M.
,
Gaber
,
J.
, and
Becherif
,
M.
,
2010
, “
Modelling and Identification of a Mechatronics Exhaust Gas Recirculation Actuator of an Internal Combustion Engine
,”
American Control Conference
(
ACC
), Baltimore, MD, June 30–July 2, pp.
2242
2247
.
7.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
8.
Nelles
,
O.
,
2001
,
Nonlinear System Identification: From Classical Approaches to Neural Network and Fuzzy Models
,
Springer
,
Berlin
.
9.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application
,
Elsevier Science
,
Oxford, UK
.
10.
Achenbach
,
E.
,
1994
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
(1–3), pp.
333
348
.
11.
Achenbach
,
E.
,
1995
, “
Response of a Solid Oxide Fuel Cell to Load Change
,”
J. Power Sources
,
57
(1–2), pp.
105
109
.
12.
Sedghisigarchi
,
K.
, and
Feliachi
,
A.
,
2004
, “
Dynamic and Transient Analysis of Power Distribution Systems With Fuel Cells—Part I: Fuel-Cell Dynamic Model
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
423
428
.
13.
Xue
,
X.
,
Tang
,
J.
,
Sammes
,
N.
, and
Du
,
Y.
,
2005
, “
Dynamic Modeling of Single Tubular SOFC Combining Heat/Mass Transfer and Electrochemical Reaction Effects
,”
J. Power Sources
,
142
(1–2), pp.
211
222
.
14.
Macdonald
,
J. R.
,
2005
,
Impedance Spectroscopy—Theory Experiment and Application
,
Wiley
,
New York
.
15.
Verkerk
,
M. J.
, and
Burggraaf
,
A. J.
,
1983
, “
Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes With Platinum Electrodes
,”
J. Electrochem. Soc.
,
130
(
1
), pp.
78
84
.
16.
Jamalabadi
,
M. Y. A.
,
2014
, “
Simulation of Electrochemical Impedance Spectroscopy of a Solid Oxide Fuel Cell Anodes
,”
World Appl. Sci. J.
,
32
(
4
), pp.
667
671
.
17.
Jamalabadi
,
M. Y. A.
,
Park
,
J. H.
, and
Lee
,
C. Y.
,
2015
, “
Optimal Design of MHD Mixed Convection Flow in a Vertical Channel With Slip Boundary Conditions and Thermal Radiation Effects by Using Entropy Generation Minimization Method
,”
Entropy
,
17
(
2
), pp.
866
881
.
18.
Jamalabadi
,
M. Y. A.
, and
Park
,
J. H.
,
2014
, “
Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on MHD Forced Convection Flow With Uniform Surface Temperature
,”
Open J. Fluid Dyn.
,
4
(
2
), pp.
125
132
.
19.
Jamalabadi
,
M. Y. A.
,
2014
, “
Experimental Investigation of Thermal Loading of a Horizontal Thin Plate Using Infrared Camera
,”
J. King Saud Univ.—Eng. Sci.
,
26
(
2
), pp.
159
167
.
20.
Jamalabadi
,
M. Y. A.
,
Ghasemi
,
M.
, and
Hamedi
,
M. H.
,
2013
, “
Numerical Investigation of Thermal Radiation Effects on Open Cavity With Discrete Heat Sources
,”
Int. J. Numer. Methods Heat Fluid Flow
,
23
(
4
), pp.
649
661
.
21.
Jamalabadi
,
M. Y. A.
,
Ghasemi
,
M.
, and
Hamedi
,
M. H.
,
2012
, “
Two-Dimensional Simulation of Thermal Loading With Horizontal Heat Sources
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
5
), pp.
1302
1308
.
22.
Jamalabadi
,
M. Y. A.
,
2015
, “
Numerical Investigation of Thermal Radiation Effects on Electrochemical Impedance Spectroscopy of a Solid Oxide Fuel Cell Anode
,”
Mater. Perform. Charact.
,
4
(
1
), pp. 1–28.
23.
VanderSteen
,
J. D. J.
, and
Pharoah
,
J. G.
,
2006
, “
Modeling Radiation Heat Transfer With Participating Media in Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
1
), pp.
62
67
.
24.
Tanaka
,
T.
,
Inui
,
Y.
,
Urata
,
A.
, and
Kanno
,
T.
,
2007
, “
Three Dimensional Analysis of Planar Solid Oxide Fuel Cell Stack Considering Radiation
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1491
1498
.
25.
Murthy
,
S.
, and
Fedorov
,
A. G.
,
2003
, “
Radiation Heat Transfer Analysis of the Monolith Type Solid Oxide Fuel Cell
,”
J. Power Sources
,
124
(
2
), pp.
453
458
.
26.
Daun
,
K. J.
,
Beale
,
S. B.
,
Liu
,
F.
, and
Smallwood
,
G. J.
,
2006
, “
Radiation Heat Transfer in Planar SOFC Electrolytes
,”
J. Power Sources
,
157
(
1
), pp.
302
310
.
27.
Damm
,
D. L.
, and
Fedorov
,
A. G.
,
2005
, “
Spectral Radiative Heat Transfer Analysis of the Planar SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
4
), pp.
258
262
.
28.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
,
2001
, “
3D Model Calculation for Planar SOFC
,”
J. Power Sources
,
102
(1–2), pp. 144–154.
29.
Primdahl
,
S.
, and
Mogensen
,
M.
,
1998
, “
Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes
,”
J. Electrochem. Soc.
,
145
(
7
), p.
2431
.
30.
Primdahl
,
S.
, and
Mogensen
,
M.
,
1999
, “
Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes
,”
J. Electrochem. Soc.
,
146
(
8
), p.
2827
.
31.
Bieberle
,
A.
, and
Gauckler
,
L.
,
2002
, “
State-Space Modeling of the Anodic SOFC System Ni, H2–H2OYSZ
,”
Solid State Ionics
,
146
(
1–2
), pp.
23
41
.
32.
Bessler
,
W.
,
2005
, “
A New Computational Approach for SOFC Impedance Based on Detailed Electrochemical Reaction-Diffusion Models
,”
Solid State Ionics
,
176
(11–12), pp.
997
1011
.
33.
Bessler
,
W.
,
2006
, “
Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes. I: Stagnation Point Flow Geometry
,”
J. Electrochem. Soc.
,
153
(
8
), pp.
A1492
A1504
.
34.
Bessler
,
W. G.
, and
Gewies
,
S.
,
2007
, “
Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes. II: Channel Geometry
,”
J. Electrochem. Soc.
,
154
(
6
), pp.
B548
B559
.
35.
Kato
,
T.
,
Nozaki
,
K.
,
Negishi
,
A.
,
Kato
,
K.
,
Momma
,
A.
,
Kaga
,
Y.
,
Nagata
,
S.
,
Takano
,
K.
,
Inagaki
,
T.
,
Yoshida
,
H.
, Hosoi, K., Hoshino, K., Akbay, T., and Akikusa, J.,
2004
, “
Impedance Analysis of a Disk-Type SOFC Using Doped Lanthanum Gallate Under Power Generation
,”
J. Power Sources
,
133
(2), pp.
169
174
.
36.
Takano
,
K.
,
Nagata
,
S.
,
Nozaki
,
K.
,
Momma
,
A.
,
Kato
,
T.
,
Kaga
,
Y.
,
Negishi
,
A.
,
Kato
,
K.
,
Inagaki
,
T.
,
Yoshida
,
H.
, Hosoi, K., Hoshino, K., Akbay, T., and Akikusa, J.,
2004
, “
Numerical Simulation of a Disk-Type SOFC for Impedance Analysis Under Power Generation
,”
J. Power Sources
,
132
(1–2), pp.
42
51
.
37.
Dahleh
,
M. A.
, 2009,
System Identification
(Lecture Notes),
MIT
, Cambridge, MA.
38.
Soderstrom
,
T.
, and
Stoica
,
P.
,
1989
,
System Identification
,
Prenntice-Hall
, Upper Saddle River, NJ.
39.
Pelckmans
,
K.
,
2012
, “
Lecture Notes for a Course on System Identification
,”
Uppsala University
, Uppsala, Sweden.
40.
Kamen
,
E. W.
, and
Su
,
J. K.
,
1999
,
Introduction to Optimal Estimation
,
Springer
, London.
41.
Bove
,
R.
, and
Ubertini
,
S.
,
2008
,
Modeling Solid Oxide Fuel Cells
,
Springer
, Dordrecht, The Netherlands.
42.
Sergey
,
V.
, and
Francesco
,
B.
,
2014
, “
Solving Linear and Quadratic Programs With an Analog Circuit
,”
Comput. Chem. Eng.
,
70
, pp.
160
171
.
43.
Orazem
,
M. E.
, and
Tribollet
,
B.
,
2008
,
Electrochemical Impedance Spectroscopy
,
Wiley
, Hoboken, NJ.
44.
Llibre
,
J.
, and
Valls
,
C.
,
2007
, “
Global Analytic First Integrals for the Real Planar Lotka–Volterra System
,”
J. Math. Phys.
,
48
(
3
), p.
033507
.
45.
Keegan
,
K.
,
Khaleel
,
M.
,
Chick
,
L.
,
Recknagle
,
K.
,
Simner
,
S.
, and
Deibler
,
J.
,
2002
, “
Analysis of a Planar Solid Oxide Fuel Cell Based Automotive Auxiliary Power Unit
,”
SAE
Technical Paper No. 2002-01-0413.
46.
Ferreira
,
J. A.
,
Barbeiro
,
S.
,
Mary
,
G. P.
, and
Wheeler
,
F.
,
2013
,
Modelling and Simulation in Fluid Dynamics in Porous Media
,
Springer
, New York, pp.
55
66
.
47.
Civan
,
F.
,
2002
, “
Implications of Alternative Macroscopic Descriptions Illustrated by General Balance and Continuity Equations
,”
J. Porous Media
,
5
(4), pp.
271
282
.
48.
Kolditz
,
O.
,
Shao
,
H.
,
Wang
,
W.
, and
Bauer
,
S.
,
2015
,
Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking
,
Springer
, Cham, Switzerland.
49.
Cengel
,
Y.
, and
Boles
,
M. A.
,
2015
, Thermodynamics: An Engineering Approach,
8th ed.
,
McGraw-Hill
, Seattle, WA.
50.
Ichikawa
,
Y.
, and
Selvadurai
,
A. P. S.
,
2012
,
Transport Phenomena in Porous Media: Aspects of Micro/Macro Behaviour
,
Springer-Verlag
,
Berlin
.
51.
Whitaker
,
S.
,
1986
, “
Flow in Porous Media I: A Theoretical Derivation of Darcy's Law
,”
Transp. Porous Media
,
1
(
1
), pp.
3
25
.
52.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Dover Publications
, Mineola, NY.
53.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp. 517–519.
54.
Gambill
,
W. R.
,
1959
, “
How to Estimate Mixtures Viscosities
,”
Chem. Eng.
,
66
, pp.
151
152
.
55.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1999
, The Mathematical Theory of Non-Uniform Gases an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases,
Cambridge University Press, Cambridge, UK
.
56.
Touloukian
,
S.
,
Saxena
,
S. C.
, and
Hestermans
,
P.
, 1975,
Viscosity
(Thermophysical Properties of Matter, Vol. 11), IFI/Plenum, New York.
57.
Buddenberg
,
J. W.
, and
Wilke
,
C. R.
,
1949
, “
Calculation of Gas Mixture Viscosities
,”
Ind. Eng. Chem.
,
41
(
7
), pp.
1345
1347
.
58.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
59.
Neufeld
,
P. D.
,
Jansen
,
A. R.
, and
Aziz
,
R. A.
,
1972
, “Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard–Jones (12–6) Potential,”
J. Chem. Phys.
,
57
(
3
), pp.
1100
1102
.
60.
Bao
,
C.
,
Cai
,
N.
, and
Croiset
,
E.
,
2011
, “
An Analytical Model of View Factors for Radiation Heat Transfer in Planar and Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
196
(
6
), pp.
3223
3232
.
61.
Damm
,
D. L.
, and
Fedorov
,
A. G.
,
2005
, “
Radiation Heat Transfer in SOFC Materials and Components
,”
J. Power Sources
,
143
(1–2), pp.
158
165
.
62.
Damm
,
D. L.
, and
Fedorov
,
A. G.
,
2004
, “
Spectral Radiative Heat Transfer Analysis of the Planar SOFC
,”
ASME
Paper No. IMECE2004-60142.
63.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
New York
.
64.
Mahcene
,
H.
,
Meddour
,
N.
,
Bechki
,
D.
,
Bouguettaia
,
H.
, and
Moussa
,
H. B.
,
2014
, “
Radiation Phenomenon in Electrodes/Electrolyte Interface of Solid Oxide Fuel Cells
,”
Energy Proc.
,
50
(
2014
), pp.
229
236
.
65.
Ferguson
,
J.
,
Fiard
,
J.
, and
Herbin
,
R.
,
1996
, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
,
58
(
2
), pp.
109
222
.
66.
Zhu
,
H.
, and
Kee
,
R.
,
2003
, “
A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies
,”
J. Power Sources
,
117
(1–2), pp.
61
74
.
67.
Chan
,
S.
,
Chen
,
X.
, and
Khor
,
K.
,
2004
, “
Cathode Micromodel of Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
151
(
1
), pp.
A164
A172
.
68.
Ackmann
,
T.
,
de Haart
,
L.
,
Lehnert
,
W.
, and
Stolten
,
D.
,
2003
, “
Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs
,”
J. Electrochem. Soc.
,
150
(
6
), pp.
A783
A789
.
69.
Li
,
P.-W.
,
Schaefer
,
L.
, and
Chyu
,
M. K.
,
2005
, “
Multiple Transport Processes in Solid Oxide Fuel Cells
,”
Transport Phenomena in Fuel Cells
,
B.
Sundén
, and
M.
Faghri
, eds.,
WIT Press
, Billerica, MA, pp.
1
41
.
70.
Okimoto
,
Y.
,
Katsufuji
,
T.
,
Ishikawa
,
T.
,
Urushibara
,
A.
,
Arima
,
T.
, and
Tokura
,
Y.
,
1995
, “
Anomalous Variation of Optical Spectra With Spin Polarization in Double-Exchange Ferromagnet: La1−xSrxMnO3
,”
Phys. Rev. Lett.
,
75
(
1
), pp.
109
112
.
71.
Kakaç
,
S.
,
Pramuanjaroenkij
,
A.
, and
Zhoub
,
X.
,
2007
, “
A Review of Numerical Modeling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
32
(
7
), pp.
761
786
.
72.
Costamagna
,
P.
, and
Honegger
,
K.
,
1998
, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
,
145
(
11
), pp.
3995
4007
.
73.
Lee
,
S.
,
Kim
,
G.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2008
, “
SOFC Anodes Based on Infiltration of La0.3Sr0.7TiO3
,”
J. Electrochem. Soc.
,
155
(
11
), pp.
B1179
B1183
.
74.
Küngas
,
R.
,
Yu
,
A. S.
,
Levine
,
J.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2013
, “
An Investigation of Oxygen Reduction Kinetics in LSF Electrodes
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
F205
F211
.
75.
Bessler
,
W. G.
,
Warnatz
,
J.
, and
Goodwin
,
D. G.
,
2007
, “
The Influence of Equilibrium Potential on the Hydrogen Oxidation Kinetics of SOFC Anodes
,”
Solid State Ionics
,
177
(39–40), pp.
3371
3383
.
76.
Chaisantikulwat
,
A.
,
Diaz-Goano
,
C.
, and
Meadows
,
E.
,
2008
, “
Dynamic Modelling and Control of Planar Anode-Supported Solid Oxide Fuel Cell
,”
Comput. Chem. Eng.
,
32
(
10
), p.
2365
.
77.
Jamalabadi, M. Y. A., 2013, “
Simulation of Electrochemical Impedance Spectroscopy of a Solid Oxide Fuel Cell Anodes
,”
5th European Fuel Cell Piero Lunghi Conference
(
EFC13
), Rome, Italy, Dec. 11–13, pp. 395–396.
78.
Revankar
,
S. T.
, and
Majumdar
,
P.
,
2014
,
Fuel Cells Principles, Design, and Analysis
,
CRC Press
,
Boca Raton, FL
.
79.
Loveday
,
D.
,
Peterson
,
P.
, and
Rodgers
,
B.
,
2004
, “
Evaluation of Organic Coatings With Electrochemical Impedance Spectroscopy. Part 1: Fundamentals of Electrochemical Impedance Spectroscopy
,”
JCT CoatingsTech
,
1
(8), pp.
46
52
.
80.
Barsoukov
,
E.
, and
Macdonald
,
J. R.
,
2005
,
Impedance Spectroscopy; Theory, Experiment, and Applications
,
2nd ed.
,
Wiley Interscience
Publications, Hoboken, NJ.
81.
Gabrielle
,
C.
,
1980
, “
Identification of Electrochemical Processes by Frequency Response Analysis
,” Solartron Instrumentation Group, Leicester, UK, Technical Report No.
004/83
.
82.
Mansfeld
,
F.
,
1990
, “
Electrochemical Impedance Spectroscopy (EIS) as a New Tool for Investigation Methods of Corrosion Protection
,”
Electrochim. Acta
,
35
(
10
), p.
1533
.
83.
Boukamp
,
B. A.
,
1993
, “
Practical Application of the Kramers-Kronig Transformation on Impedance Measurements in Solid State Electrochemistry
,”
Solid State Ionics
,
62
(1–2), pp.
131
141
.
84.
Huang
,
B.
,
Qi
,
Y.
, and
Murshed
,
A.
,
2013
,
Dynamic Modelling and Predictive Control in Solid Oxide Fuel Cells: First Principle and Data-Based Approaches
,
Wiley
, Hoboken, NJ.
85.
Gemmen
,
R. S.
, and
Johnson
,
C. D.
,
2005
, “
Effect of Load Transients on SOFC Operation—Current Reversal on Loss of Load
,”
J. Power Sources
,
114
(1), pp.
152
164
.
You do not currently have access to this content.