For a gas diffusion cathode for oxygen reduction reaction (ORR) in aqueous alkaline electrolyte, it is important to create networks for O2 gas diffusion, electronic conduction, and liquid-phase OH transport in the cathode at once. In this study, we succeeded to fabricate a promising cathode using hydrophobic vapor grown carbon fibers (VGCF-Xs), instead of hydrophobic carbon blacks (CBs), as additives to its active layer (AL). Mercury porosimetry, as well as electrochemical impedance spectroscopy, showed that porosity of the cathode gradually increased with increasing the amount of the carbon fibers. In other words, addition of larger amount of the carbon fibers creates better O2 gas diffusion channels. Also, the activation polarization resistance for the ORR increased as the carbon fibers' amount from 0 to 0.03–0.04 g and then dropped. In consequence, the cathode with 0.03 g of the carbon fibers exhibited the highest ORR performance among the prepared cathodes.

References

References
1.
Steele
,
B. C. H.
, and
Heinzel
,
A.
,
2001
, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
(
6861
), pp.
345
352
.
2.
Cheng
,
F. Y.
, and
Chen
,
J.
,
2012
, “
Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts
,”
Chem. Soc. Rev.
,
41
(
6
), pp.
2172
2192
.
3.
Spendelow
,
J. S.
, and
Wieckowski
,
A.
,
2007
, “
Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media
,”
Phys. Chem. Chem. Phys.
,
9
(
21
), pp.
2654
2675
.
4.
Christensen
,
P. A.
,
Hamnett
,
A.
, and
Linares-Moya
,
D.
,
2011
, “
Oxygen Reduction and Fuel Oxidation in Alkaline Solution
,”
Phys. Chem. Chem. Phys.
,
13
(
12
), pp.
5206
5214
.
5.
Jorissen
,
L.
,
2006
, “
Bifunctional Oxygen/Air Electrodes
,”
J. Power Sources
,
155
(
1
), pp.
23
32
.
6.
Bidault
,
F.
,
Brett
,
D. J. L.
,
Middleton
,
P. H.
, and
Brandon
,
N. P.
,
2009
, “
Review of Gas Diffusion Cathodes for Alkaline Fuel Cells
,”
J. Power Sources
,
187
(
1
), pp.
39
48
.
7.
Lima
,
F. H. B.
, and
Ticianelli
,
E. A.
,
2004
, “
Oxygen Electrocatalysis on Ultra-Thin Porous Coating Rotating Ring/Disk Platinum and Platinum-Cobalt Electrodes in Alkaline Media
,”
Electrochim. Acta
,
49
(
24
), pp.
4091
4099
.
8.
Motoo
,
S.
,
Watanabe
,
M.
, and
Furuya
,
N.
,
1984
, “
Gas-Diffusion Electrode of High-Performance
,”
J. Electroanal. Chem.
,
160
(1–2), pp.
351
357
.
9.
Watanabe
,
M.
,
Tomikawa
,
M.
, and
Motoo
,
S.
,
1985
, “
Preparation of a High-Performance Gas-Diffusion Electrode
,”
J. Electroanal. Chem.
,
182
(
1
), pp.
193
196
.
10.
Watanabe
,
M.
,
Makita
,
K.
,
Usami
,
H.
, and
Motoo
,
S.
,
1986
, “
New Preparation Method of a High-Performance Gas-Diffusion Electrode Working at 100-Percent Utilization of Catalyst Clusters and Analysis of the Reaction Layer
,”
J. Electroanal. Chem.
,
197
(1–2), pp.
195
208
.
11.
Wang
,
J. J.
,
Yin
,
G. P.
,
Shao
,
Y. Y.
,
Zhang
,
S.
,
Wang
,
Z. B.
, and
Gao
,
Y. Z.
,
2007
, “
Effect of Carbon Black Support Corrosion on the Durability of Pt/C Catalyst
,”
J. Power Sources
,
171
(
2
), pp.
331
339
.
12.
Hacker
,
V.
,
Wallnofer
,
E.
,
Baumgartner
,
W.
,
Schaffer
,
T.
,
Besenhard
,
J. O.
,
Schrottner
,
H.
, and
Schmied
,
M.
,
2005
, “
Carbon Nanofiber-Based Active Layers for Fuel Cell Cathodes—Preparation and Characterization
,”
Electrochem. Commun.
,
7
(
4
), pp.
377
382
.
13.
Huang
,
H.
,
Zhang
,
W. K.
,
Li
,
M. C.
,
Gan
,
Y. P.
,
Chen
,
J. H.
, and
Kuang
,
Y. F.
,
2005
, “
Carbon Nanotubes as a Secondary Support of a Catalyst Layer in a Gas Diffusion Electrode for Metal Air Batteries
,”
J. Colloid Interface Sci.
,
284
(
2
), pp.
593
599
.
14.
Yang
,
C. C.
,
Hsu
,
S. T.
,
Chien
,
W. C.
,
Shih
,
M. C.
,
Chiu
,
S. J.
,
Lee
,
K. T.
, and
Wang
,
C. L.
,
2006
, “
Electrochemical Properties of Air Electrodes Based on MnO2 Catalysts Supported on Binary Carbons
,”
Int. J. Hydrogen Energy
,
31
(
14
), pp.
2076
2087
.
15.
Gendel
,
Y.
,
Roth
,
H.
,
Rommerskirchen
,
A.
,
David
,
O.
, and
Wessling
,
M.
,
2014
, “
A Microtubular All CNT Gas Diffusion Electrode
,”
Electrochem. Commun.
,
46
, pp.
44
47
.
16.
Wang
,
Y.
,
Jin
,
J. H.
,
Yang
,
S. L.
,
Li
,
G.
, and
Qiao
,
J. L.
,
2015
, “
Highly Active and Stable Platinum Catalyst Supported on Porous Carbon Nanofibers for Improved Performance of PEMFC
,”
Electrochim. Acta
,
177
, pp.
181
189
.
17.
Li
,
Y. F.
,
Huang
,
Z. P.
,
Huang
,
K.
,
Carnahan
,
D.
, and
Xing
,
Y. C.
,
2013
, “
Hybrid Li-Air Battery Cathodes With Sparse Carbon Nanotube Arrays Directly Grown on Carbon Fiber Papers
,”
Energy Environ. Sci.
,
6
(
11
), pp.
3339
3345
.
18.
Tomantschger
,
K.
, and
Kordesch
,
K. V.
,
1989
, “
Structural-Analysis of Alkaline Fuel-Cell Electrodes and Electrode Materials
,”
J. Power Sources
,
25
(
3
), pp.
195
214
.
19.
Shteinberg
,
G. V.
,
Dribinsky
,
A. V.
,
Kukushkina
,
I. A.
,
Mokorousov
,
L. N.
, and
Bagotzky
,
V. S.
,
1984
, “
Investigation of the Carbon Oxygen (Air) Electrode
,”
J. Electroanal. Chem.
,
180
(1–2), pp.
619
637
.
20.
Arico
,
A. S.
,
Srinivasan
,
S.
, and
Antonucci
,
V.
,
2001
, “
DMFCs: From Fundamental Aspects to Technology Development
,”
Fuel Cells
,
1
(
2
), pp.
133
161
.
21.
Eom
,
S. W.
,
Lee
,
C. W.
,
Yun
,
M. S.
, and
Sun
,
Y. K.
,
2006
, “
The Roles and Electrochemical Characterizations of Activated Carbon in Zinc Air Battery Cathodes
,”
Electrochim. Acta
,
52
(
4
), pp.
1592
1595
.
22.
Wang
,
Y. G.
,
Cheng
,
L.
,
Li
,
F.
,
Xiong
,
H. M.
, and
Xia
,
Y. Y.
,
2007
, “
High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions
,”
Chem. Mater.
,
19
(
8
), pp.
2095
2101
.
23.
Stamatin
,
S. N.
,
Borghei
,
M.
,
Dhiman
,
R.
,
Andersen
,
S. M.
,
Ruiz
,
V.
,
Kauppinen
,
E.
, and
Skou
,
E. M.
,
2015
, “
Activity and Stability Studies of Platinized Multi-Walled Carbon Nanotubes as Fuel Cell Electrocatalysts
,”
Appl. Catal., B
,
162
, pp.
289
299
.
24.
Andersen
,
S. M.
,
2016
, “
Nano Carbon Supported Platinum Catalyst Interaction Behavior With Perfluorosulfonic Acid Ionomer and Their Interface Structures
,”
Appl. Catal., B
,
181
, pp.
146
155
.
25.
Waki
,
K.
,
Wong
,
R. A.
,
Oktaviano
,
H. S.
,
Fujio
,
T.
,
Nagai
,
T.
,
Kimoto
,
K.
, and
Yamada
,
K.
,
2014
, “
Non-Nitrogen Doped and Non-Metal Oxygen Reduction Electrocatalysts Based on Carbon Nanotubes: Mechanism and Origin of ORR Activity
,”
Energy Environ. Sci.
,
7
(
6
), pp.
1950
1958
.
26.
Wei
,
W.
,
Tao
,
Y.
,
Lv
,
W.
,
Su
,
F. Y.
,
Ke
,
L.
,
Li
,
J.
,
Wang
,
D. W.
,
Li
,
B. H.
,
Kang
,
F. Y.
, and
Yang
,
Q. H.
,
2014
, “
Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts
,”
Sci. Rep.
,
4
, p.
6289
.
27.
Li
,
Y. G.
,
Zhou
,
W.
,
Wang
,
H. L.
,
Xie
,
L. M.
,
Liang
,
Y. Y.
,
Wei
,
F.
,
Idrobo
,
J. C.
,
Pennycook
,
S. J.
, and
Dai
,
H. J.
,
2012
, “
An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube-Graphene Complexes
,”
Nat. Nanotechnol.
,
7
(
6
), pp.
394
400
.
28.
Jung
,
G. B.
,
Tzeng
,
W. J.
,
Jao
,
T. C.
,
Liu
,
Y. H.
, and
Yeh
,
C. C.
,
2013
, “
Investigation of Porous Carbon and Carbon Nanotube Layer for Proton Exchange Membrane Fuel Cells
,”
Appl. Energy
,
101
, pp.
457
464
.
29.
Xie
,
Z. Y.
,
Chen
,
G. F.
,
Yu
,
X.
,
Hou
,
M.
,
Shao
,
Z. G.
,
Hong
,
S. J.
, and
Mu
,
C.
,
2015
, “
Carbon Nanotubes Grown In Situ on Carbon Paper as a Microporous Layer for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
40
(
29
), pp.
8958
8965
.
30.
Du
,
H. Y.
,
Wang
,
C. H.
,
Hsu
,
H. C.
,
Chang
,
S. T.
,
Yen
,
S. C.
,
Chen
,
L. C.
,
Viswanathan
,
B.
, and
Chen
,
K. H.
,
2011
, “
High Performance of Catalysts Supported by Directly Grown PTFE-Free Micro-Porous CNT Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Mater. Chem.
,
21
(
8
), pp.
2512
2516
.
31.
Pozio
,
A.
,
De Francesco
,
M.
,
Cemmi
,
A.
,
Cardellini
,
F.
, and
Giorgi
,
L.
,
2002
, “
Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry
,”
J. Power Sources
,
105
(
1
), pp.
13
19
.
32.
Gorzny
,
M. L.
,
Walton
,
A. S.
, and
Evans
,
S. D.
,
2010
, “
Synthesis of High-Surface-Area Platinum Nanotubes Using a Viral Template
,”
Adv. Funct. Mater.
,
20
(
8
), pp.
1295
1300
.
33.
Nishikawa
,
O.
,
Doyama
,
K.
,
Miyatake
,
K.
,
Uchida
,
H.
, and
Watanabe
,
M.
,
2005
, “
Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells Using Novel Organic/Inorganic Hybrid Electrolytes: Effect of Carbon Black Addition in the Catalyst Layer
,”
Electrochim. Acta
,
50
(
13
), pp.
2719
2723
.
34.
Watanabe
,
M.
,
Tomikawa
,
M.
, and
Motoo
,
S.
,
1985
, “
Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode
,”
J. Electroanal. Chem.
,
195
(
1
), pp.
81
93
.
You do not currently have access to this content.