There is an enormous potential for energy generation from the mixing of sea and river water at global estuaries. Here, we model a novel approach to convert this source of energy directly into hydrogen and electricity using reverse electrodialysis (RED). RED relies on converting ionic current to electric current using multiple membranes and redox-based electrodes. A thermodynamic model for RED is created to evaluate the electricity and hydrogen which can be extracted from natural mixing processes. With equal volume of high and low concentration solutions (1 L), the maximum energy extracted per volume of solution mixed occurred when the number of membranes is reduced, with the lowest number tested here being five membrane pairs. At this operating point, 0.32 kWh/m3 is extracted as electrical energy and 0.95 kWh/m3 as hydrogen energy. This corresponded to an electrical energy conversion efficiency of 15%, a hydrogen energy efficiency of 35%, and therefore, a total mixing energy efficiency of nearly 50%. As the number of membrane pairs increases from 5 to 20, the hydrogen power density decreases from 13.6 W/m2 to 2.4 W/m2 at optimum external load. In contrast, the electrical power density increases from 0.84 W/m2 to 2.2 W/m2. Optimum operation of RED depends significantly on the external load (external device). A small load will increase hydrogen energy while decreasing electrical energy. This trade-off is critical in order to optimally operate an RED cell for both hydrogen and electricity generation.

References

References
1.
Nijmeijer
,
K.
, and
Metz
,
S.
,
2010
, “
Salinity Gradient Energy
,”
Sustainability Sci. Eng.
,
2
, pp.
95
139
.
2.
Alvarez-Silva
,
O.
,
Osorio
,
A.
, and
Winter
,
C.
,
2016
, “
Practical Global Salinity Gradient Energy Potential
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1387
1395
.
3.
Logan
,
B. E.
, and
Elimelech
,
M.
,
2012
, “
Membrane-Based Processes for Sustainable Power Generation Using Water
,”
Nature
,
488
(
7411
), pp.
313
319
.
4.
Lee
,
K. P.
,
Arnot
,
T. C.
, and
Mattia
,
D.
,
2011
, “
A Review of Reverse Osmosis Membrane Materials for Desalination-Development to Date and Future Potential
,”
J. Membr. Sci.
,
370
(
1
), pp.
1
22
.
5.
Yip
,
N. Y.
, and
Elimelech
,
M.
,
2012
, “
Thermodynamic and Energy Efficiency Analysis of Power Generation From Natural Salinity Gradients by Pressure Retarded Osmosis
,”
Environ. Sci. Technol.
,
46
(
9
), pp.
5230
5239
.
6.
Straub
,
A. P.
,
Deshmukh
,
A.
, and
Elimelech
,
M.
,
2016
, “
Pressure-Retarded Osmosis for Power Generation From Salinity Gradients: Is It Viable?
Energy Environ. Sci.
,
9
(
1
), pp.
31
48
.
7.
Brogioli
,
D.
,
2009
, “
Extracting Renewable Energy From a Salinity Difference Using a Capacitor
,”
Phys. Rev. Lett.
,
103
(
5
), p.
058501
.
8.
Sales
,
B.
,
Saakes
,
M.
,
Post
,
J.
,
Buisman
,
C.
,
Biesheuvel
,
P.
, and
Hamelers
,
H.
,
2010
, “
Direct Power Production From a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell
,”
Environ. Sci. Technol.
,
44
(
14
), pp.
5661
5665
.
9.
Brogioli
,
D.
,
Ziano
,
R.
,
Rica
,
R.
,
Salerno
,
D.
, and
Mantegazza
,
F.
,
2013
, “
Capacitive Mixing for the Extraction of Energy From Salinity Differences: Survey of Experimental Results and Electrochemical Models
,”
J. Colloid Interface Sci.
,
407
, pp.
457
466
.
10.
Hatzell
,
M. C.
,
Ivanov
,
I.
,
Cusick
,
R. D.
,
Zhu
,
X.
, and
Logan
,
B. E.
,
2014
, “
Comparison of Hydrogen Production and Electrical Power Generation for Energy Capture in Closed-Loop Ammonium Bicarbonate Reverse Electrodialysis Systems
,”
Phys. Chem. Chem. Phys.
,
16
(
4
), pp.
1632
1638
.
11.
Hatzell
,
M. C.
, and
Zhu
,
X.
,
2014
, “
Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System
,”
ACS Sustainable Chem. Eng.,
2
(
9
), pp.
2211
2216
.
12.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S.
, and
Harmsen
,
G.
,
2009
, “
Reverse Electrodialysis: Performance of a Stack With 50 Cells on the Mixing of Sea and River Water
,”
J. Membr. Sci.
,
327
(
1
), pp.
136
144
.
13.
Vermaas
,
D. A.
,
Saakes
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Doubled Power Density From Salinity Gradients at Reduced Intermembrane Distance
,”
Environ. Sci. Technol.
,
45
(
16
), pp.
7089
7095
.
14.
Długołȩcki
,
P.
,
Gambier
,
A.
,
Nijmeijer
,
K.
, and
Wessling
,
M.
,
2009
, “
Practical Potential of Reverse Electrodialysis as Process for Sustainable Energy Generation
,”
Environ. Sci. Technol.
,
43
(
17
), pp.
6888
6894
.
15.
Brauns
,
E.
,
2009
, “
Salinity Gradient Power by Reverse Electrodialysis: Effect of Model Parameters on Electrical Power Output
,”
Desalination
,
237
(
1
), pp.
378
391
.
16.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S.
, and
Harmsen
,
G.
,
2011
, “
Reverse Electrodialysis: A Validated Process Model for Design and Optimization
,”
Chem. Eng. J.
,
166
(
1
), pp.
256
268
.
17.
Yip
,
N. Y.
,
Vermaas
,
D. A.
,
Nijmeijer
,
K.
, and
Elimelech
,
M.
,
2014
, “
Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation With Natural Salinity Gradients
,”
Environ. Sci. Technol.
,
48
(
9
), pp.
4925
4936
.
18.
Post
,
J. W.
,
Hamelers
,
H. V.
, and
Buisman
,
C. J.
,
2008
, “
Energy Recovery From Controlled Mixing Salt and Fresh Water With a Reverse Electrodialysis System
,”
Environ. Sci. Technol.
,
42
(
15
), pp.
5785
5790
.
19.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2010
, “
Electrical Power From Sea and River Water by Reverse Electrodialysis: A First Step From the Laboratory to a Real Power Plant
,”
Environ. Sci. Technol.
,
44
(
23
), pp.
9207
9212
.
20.
Hong
,
J. G.
,
Zhang
,
B.
,
Glabman
,
S.
,
Uzal
,
N.
,
Dou
,
X.
,
Zhang
,
H.
,
Wei
,
X.
, and
Chen
,
Y.
,
2015
, “
Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review
,”
J. Membr. Sci.
,
486
, pp.
71
88
.
21.
Robinson
,
R. A.
, and
Stokes
,
R. H.
,
1955
,
Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes
,
Butterworths
,
Mineola, NY
.
22.
Dlugolkecki
,
P.
,
Ogonowski
,
P.
,
Metz
,
S. J.
,
Saakes
,
M.
,
Nijmeijer
,
K.
, and
Wessling
,
M.
,
2010
, “
On the Resistances of Membrane, Diffusion Boundary Layer and Double Layer in Ion Exchange Membrane Transport
,”
J. Membr. Sci.
,
349
(
1
), pp.
369
379
.
23.
Brauns
,
E.
,
2008
, “
Towards a Worldwide Sustainable and Simultaneous Large-Scale Production of Renewable Energy and Potable Water Through Salinity Gradient Power by Combining Reversed Electrodialysis and Solar Power?
Desalination
,
219
(
1
), pp.
312
323
.
You do not currently have access to this content.