Fossil fuel power plants are responsible for a significant portion of anthropogenic atmospheric carbon dioxide (CO2) and due to concerns over global climate change, finding solutions that significantly reduce emissions at their source has become a vital concern. When oxygen (O2) is reduced along with CO2 at the cathode of an anion exchange membrane (AEM) electrochemical cell, carbonate and bicarbonate are formed which are transported through electrolyte by migration from the cathode to the anode where they are oxidized back to CO2 and O2. This behavior makes AEM-based devices scientifically interesting CO2 separation devices or “electrochemical CO2 pumps.” Electrochemical CO2 separation is a promising alternative to the state-of-the-art solvent-based methods because the cells operate at low temperatures and scale with surface area, not volume, suggesting that the industrial electrochemical systems could be more compact than amine sorption technologies. In this work, we investigate the impact of the CO2 separator cell potential on the CO2 flux, carbonate transport mechanism, and process costs. The applied electrical current and CO2 flux showed a strong correlation that was both stable and reversible. The dominant anion transport pathway, carbonate versus bicarbonate, undergoes a shift from carbonate to mixed carbonate/bicarbonate with increased potential. A preliminary techno-economic analysis shows that despite the limitations of present cells, there is a clear pathway to meet the U.S. Department of Energy (DOE) 2025 and 2035 targets for power plant retrofit CO2 capture systems through materials and systems-level advances.

References

References
1.
Office of Fossil Energy, 2013, “Carbon Capture Technology Program Plan,”
U.S. Department of Energy
, Washington, DC.
2.
Boot-Handford
,
M. E.
,
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Blunt
,
M. J.
,
Brandani
,
S.
,
Mac Dowell
,
N.
,
Fernández
,
J. R.
,
Ferrari
,
M.-C.
,
Gross
,
R.
,
Hallett
,
J. P.
,
Haszeldine
,
R. S.
,
Heptonstall
,
P.
,
Lyngfelt
,
A.
,
Makuch
,
Z.
,
Mangano
,
E.
,
Porter
,
R. T. J.
,
Pourkashanian
,
M.
,
Rochelle
,
G. T.
,
Shah
,
N.
,
Yao
,
J. G.
, and
Fennell
,
P. S.
,
2014
, “
Carbon Capture and Storage Update
,”
Energy Environ. Sci.
,
7
(
1
), p.
130
.
3.
USGS, 2013, “National Assessment of Geologic Carbon Dioxide Storage Resources—Results,”
U.S. Geological Survey
, Reston, VA.
4.
Dimitriou
,
I.
,
García-Gutiérrez
,
P.
,
Elder
,
R. H.
,
Cuellar-Franca
,
R.
,
Azapagic
,
A.
, and
Allen
,
R. W. K.
,
2015
, “
Carbon Dioxide Utilisation for Production of Transport Fuels: Process and Economic Analysis
,”
Energy Environ. Sci.
,
8
(
6
), pp.
1775
1789
.
5.
Spinner
,
N. S.
,
Vega
,
J. A.
, and
Mustain
,
W. E.
,
2012
, “
Recent Progress in the Electrochemical Conversion and Utilization of CO2
,”
Catal. Sci. Technol.
,
2
(
1
), p.
19
.
6.
Fisher
,
K. S.
,
Street
,
S. A.
,
Rochelle
,
G.
, and
Figueroa
,
J. D.
,
2005
, “
Integrating MEA Regeneration With CO2 Compression to Reduce CO2 Capture Costs
,”
4th Annual Conference on Carbon Capture and Sequestration
, Alexandria, VA, May 2–5, Paper No. 38.
7.
EPA
,
2015
, “
Greenhouse Gas Emissions
,” U.S. Environmental Protection Agency, Washington, DC, http://www.epa.gov/climatechange/ghgemissions/
8.
EIA,
2013
, “
Independent Statistics and Analysis, Electricity
,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/countries/analysisbriefs/Nigeria/nigeria.pdf
9.
Yu
,
C.
,
Huang
,
C.
, and
Tan
,
C.
,
2012
, “
A Review of CO2 Capture by Absorption and Adsorption
,”
Aerosol Air Qual. Res.
,
12
, pp.
745
769
.
10.
Zhai
,
R.
, and
Yang
,
Y.
,
2010
, “
CaO-Based CO2 Capture Technology and Its Application in Power Plants
,”
Paths to Sustainable Energy
,
A.
Ng
, ed.,
InTech
, Rijeka, Croatia, pp.
499
511
.
11.
Ho
,
M. T.
,
Allinson
,
G. W.
, and
Wiley
,
D. E.
,
2008
, “
Reducing the Cost of CO2 Capture From Flue Gases Using Pressure Swing Adsorption
,”
Ind. Eng. Chem. Res.
,
47
(
14
), pp.
4883
4890
.
12.
Rochelle
,
G. T.
,
2009
, “
Amine Scrubbing for CO2 Capture
,”
Science
,
325
(
5948
), pp.
1652
1654
.
13.
EIA
,
2015
, “
Independent Statistics and Analysis, Electricity, Sales (Consumption), Revenue, Prices and Customers
,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/electricity/data.cfm#sales
14.
Booras
,
G. S.
, and
Smelser
,
S. C.
,
1991
, “
An Engineering and Economic Evaluation of CO2 Removal From Fossil-Fuel-Fired Power Plants
,”
Energy
,
16
(
11–12
), pp.
1295
1305
.
15.
White
,
C. M.
,
Strazisar
,
B. R.
,
Granite
,
E. J.
,
Hoffman
,
J. S.
, and
Pennline
,
H. W.
,
2003
, “
Separation and Capture of CO2 From Large Stationary Sources and Sequestration in Geological Formations- Coalbeds and Deep Saline Aquifers
,”
J. Air Waste Manage. Assoc.
,
53
(
6
), pp.
645
715
.
16.
Granite
,
E. J.
, and
O'Brien
,
T.
,
2005
, “
Review of Novel Methods for Carbon Dioxide Separation From Flue and Fuel Gases
,”
Fuel Process. Technol.
,
86
(
14
), pp.
1423
1434
.
17.
Aaron
,
D.
, and
Tsouris
,
C.
,
2005
, “
Separation of CO2 From Flue Gas: A Review
,”
Sep. Sci. Technol.
,
40
(
1–3
), pp.
321
348
.
18.
Manzolini
,
G.
,
Campanari
,
S.
,
Chiesa
,
P.
,
Giannotti
,
A.
,
Bedont
,
P.
, and
Parodi
,
F.
,
2012
, “
CO2 Separation From Combined Cycles Using Molten Carbonate Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011018
.
19.
Amorelli
,
A.
,
Wilkinson
,
M. B.
,
Bedont
,
P.
,
Capobianco
,
P.
,
Marcenaro
,
B.
,
Parodi
,
F.
, and
Torazza
,
A.
,
2002
, “
An Experimental Investigation Into the Use of Molten Carbonate Fuel Cells to Capture CO2 From Gas Turbine Exhaust Gases
,”
Energy
,
29
(9–10), pp.
1279
1284
.
20.
Winnick
,
J.
,
Toghiani
,
H.
, and
Quattrone
,
P. D.
,
1982
, “
Carbon Dioxide Concentration for Manned Spacecraft Using a Molten Carbonate Electrochemical Cell
,”
AIChE J.
,
28
(
1
), pp.
103
111
.
21.
Sugiura
,
K.
,
Yanagida
,
M.
,
Tanimoto
,
K.
, and
Kojima
,
T.
,
2000
, “
The Removal Characteristics of Carbon Dioxide in Molten Carbonate for the Thermal Power Plant
,”
Fifth International Conference on Greenhouse Gas Control Technologies (GHGT-5)
, Cairns, Australia, Aug. 13–16.
22.
Rheinhardt
,
J.
, and
Buttry
,
D. A.
,
2014
, “
Energy Efficient Capture and Release of Carbon Dioxide in Tetraalkyl Phosphonium and Tetraalkyl Ammonium Ionic Liquids
,” 226th Meeting of the Electrochemical Society (
ECS
), Cancun, Mexico, Oct. 5–9, Paper No.
1431
.
23.
Hasani
,
M.
, and
Buttry
,
D.
,
2013
, “
Chemical Reactivity of Alkyl Thiolates Used in Electrochemical CO2 Capture in Ionic Liquids
,” 226th Meeting of the Electrochemical Society (
ECS
), San Francisco, CA, Oct. 27–Nov. 1, Paper No.
2601
.
24.
Buttry
,
D. A.
,
2014
, “
Capture and Release of Carbon Dioxide
,” U.S. Patent Application No. 20140271434 A1.
25.
Li
,
K.
, and
Li
,
N.
,
1993
, “
Removal of Carbon Dioxide From Breathing Gas Mixtures Using an Electrochemical Membrane Cell
,”
Sep. Sci. Technol.
,
28
(
4
), pp.
1085
1090
.
26.
Li
,
K.
,
Teo
,
W.
, and
Hughes
,
R.
,
1994
, “
Use of Membranes for Carbon Dioxide Removal in Underwater Life Support Systems
,”
Underwater Technol.
,
20
(
1
), pp.
13
17
.
27.
Xiao
,
S.
, and
Li
,
K.
,
1997
, “
On the Use of an Electrochemical Membrane Module for Removal of CO2 From a Breathing Gas Mixture
,”
Chem. Eng. Res. Des.
,
75
(
4
), pp.
438
446
.
28.
Pennline
,
H. W.
,
Granite
,
E. J.
,
Luebke
,
D. R.
,
Kitchin
,
J. R.
,
Landon
,
J.
, and
Weiland
,
L. M.
,
2010
, “
Separation of CO2 From Flue Gas Using Electrochemical Cells
,”
Fuel
,
89
(
6
), pp.
1307
1314
.
29.
Landon
,
J.
, and
Kitchin
,
J. R.
,
2010
, “
Electrochemical Concentration of Carbon Dioxide From an Oxygen/Carbon Dioxide Containing Gas Stream
,”
J. Electrochem. Soc.
,
157
(
8
), p.
B1149
.
30.
Varcoe
,
J. R.
,
Atanassov
,
P.
,
Dekel
,
D. R.
,
Herring
,
A. M.
,
Hickner
,
M. A.
,
Kohl
,
P. A.
,
Kucernak
,
A. R.
,
Mustain
,
W. E.
,
Nijmeijer
,
K.
,
Scott
,
K.
,
Xu
,
T.
, and
Zhuang
,
L.
,
2014
, “
Anion-Exchange Membranes in Electrochemical Energy Systems
,”
Energy Environ. Sci.
,
7
(
10
), pp.
3135
3191
.
31.
Li
,
N.
,
Leng
,
Y.
,
Hickner
,
M. A.
, and
Wang
,
C. Y.
,
2013
, “
Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells
,”
J. Am. Chem. Soc.
,
135
(
27
), pp.
10124
10133
.
32.
Hickner
,
M. A.
,
Herring
,
A. M.
, and
Coughlin
,
E. B.
,
2013
, “
Anion Exchange Membranes: Current Status and Moving Forward
,”
J. Polym. Sci. Part B
,
51
(
24
), pp.
1727
1735
.
33.
Grew
,
K. N.
,
Ren
,
X.
, and
Chu
,
D.
,
2011
, “
Effects of Temperature and Carbon Dioxide on Anion Exchange Membrane Conductivity
,”
Electrochem. Solid-State Lett.
,
14
(
12
), p.
B127
.
34.
Kiss
,
A. M.
,
Myles
,
T. D.
,
Grew
,
K. N.
,
Peracchio
,
A. A.
,
Nelson
,
G. J.
, and
Chiu
,
W. K. S.
,
2013
, “
Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
F994
F999
.
35.
Myles
,
T. D.
,
Kiss
,
A. M.
,
Grew
,
K. N.
,
Peracchio
,
A. A.
,
Nelson
,
G. J.
, and
Chiu
,
W. K. S.
,
2011
, “
Calculation of Water Diffusion Coefficients in an Anion Exchange Membrane Using a Water Permeation Technique
,”
J. Electrochem. Soc.
,
158
(
7
), p.
B790
.
36.
Vega
,
J. A.
,
Shrestha
,
S.
,
Ignatowich
,
M.
, and
Mustain
,
W. E.
,
2012
, “
Carbonate Selective Ca2Ru2O7-y Pyrochlore Enabling Room Temperature Carbonate Fuel Cells
,”
J. Electrochem. Soc.
,
159
(
1
), p.
B12
.
37.
Vega
,
J. A.
,
Spinner
,
N.
,
Catanese
,
M.
, and
Mustain
,
W. E.
,
2012
, “
Carbonate Selective Ca2Ru2O7-y Pyrochlore Enabling Room Temperature Carbonate Fuel Cells
,”
J. Electrochem. Soc.
,
159
(
1
), p.
B19
.
38.
Hancock
,
C. A.
,
Ong
,
A. L.
, and
Varcoe
,
J. R.
,
2014
, “
Effect of Carbonate Anions on Bi-Doped Ca2Ru2O7 Pyrochlores That are Potential Cathode Catalysts for Low Temperature Carbonate Fuel Cells
,”
RSC Adv.
,
4
(
57
), pp.
30035
30045
.
39.
Spinner
,
N.
, and
Mustain
,
W. E.
,
2013
, “
Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
F1275
F1281
.
40.
Spinner
,
N.
, and
Mustain
,
W. E.
,
2011
, “
Effect of Nickel Oxide Synthesis Conditions on Its Physical Properties and Electrocatalytic Oxidation of Methanol
,”
Electrochim. Acta
,
56
(
16
), pp.
5656
5666
.
41.
Gunasekara
,
I.
,
Lee
,
M.
,
Abbott
,
D.
, and
Mukerjee
,
S.
,
2012
, “
Mass Transport and Oxygen Reduction Kinetics at an Anion Exchange Membrane Interface: Microelectrode Studies on Effect of Carbonate Exchange
,”
ECS Electrochem. Lett.
,
1
(
2
), pp.
F16
F19
.
42.
Li
,
G.
,
Wang
,
Y.
,
Pan
,
J.
,
Han
,
J.
,
Liu
,
Q.
,
Li
,
X.
,
Li
,
P.
,
Chen
,
C.
,
Xiao
,
L.
,
Lu
,
J.
, and
Zhuang
,
L.
,
2015
, “
Carbonation Effects on the Performance of Alkaline Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
40
(
20
), pp.
6655
6660
.
43.
Poynton
,
S. D.
,
Slade
,
R. C. T.
,
Omasta
,
T. J.
,
Mustain
,
W. E.
,
Escudero-Cid
,
R.
,
Ocón
,
P.
, and
Varcoe
,
J. R.
,
2014
, “
Preparation of Radiation-Grafted Powders for Use as Anion Exchange Ionomers in Alkaline Polymer Electrolyte Fuel Cells
,”
J. Mater. Chem. A
,
2
(
14
), p.
5124
.
44.
Roen
,
L. M.
,
Paik
,
C. H.
, and
Jarvi
,
T. D.
,
2004
, “
Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes
,”
Electrochem. Solid-State Lett.
,
7
(
1
), p.
A19
.
45.
Shrestha
,
S.
,
Liu
,
Y.
, and
Mustain
,
W. E.
,
2011
, “
Electrocatalytic Activity and Stability of Pt Clusters on State-of-the-Art Supports: A Review
,”
Catal. Rev.
,
53
(
3
), pp.
256
336
.
46.
Vega
,
J. A.
,
Chartier
,
C.
, and
Mustain
,
W. E.
,
2010
, “
Effect of Hydroxide and Carbonate Alkaline Media on Anion Exchange Membranes
,”
J. Power Sources
,
195
(
21
), pp.
7176
7180
.
47.
Wu
,
J.
,
Yadav
,
R. M.
,
Liu
,
M.
,
Sharma
,
P. P.
,
Tiwary
,
C. S.
,
Ma
,
L.
,
Zou
,
X.
,
Zhou
,
X.
,
Yakobson
,
B. I.
,
Lou
,
J.
, and
Ajayan
,
P. M.
,
2015
, “
Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes
,”
Nano
,
9
(
5
), pp.
5364
5371
.
You do not currently have access to this content.